You can find here the solutions to the problems whose solution is not on the back of the book.

Problem 2.2.5

Solution:
$6x + 4y$ is 2 times $3x + 2y$. There is no solution unless the right side is $2 \cdot 10 = 20$. Then all the points on the line $3x + 2y = 10$ are solutions, including $(0, 5)$ and $(4, -1)$. (The two lines in the row picture are the same line, containing all solutions).

Problem 2.2.12

Solution:
Elimination leads to an upper triangular system; then comes back substitution. So, we have the system
\[
\begin{bmatrix}
2 & 3 & 1 \\
0 & 1 & 3 \\
0 & 0 & 8
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
8 \\
4 \\
8
\end{bmatrix}.
\]

The third equation gives $z = 1$, which then means that, plugging in this value for z in the second equation, $y = 1$. Finally, using these values for y and z in the first equation, $x = 2$. Thus we get $(x, y, z) = (2, 1, 1)$.

Problem 2.3.8

Solution:
Let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then, $M^* = \begin{bmatrix} a & -\ell b \\ c-\ell a & d-\ell b \end{bmatrix}$. Hence, we have that $\det M^* = a(d-\ell b) - b(c-\ell a) = ad - a\ell b - bc + a\ell b$. Thus, $\det M^* = ad - bc$.

Problem 2.3.13

Solution:

1. E times the third column of B is the third column of EB. Thus a column that stars at zero will stay at zero.

2. E could add row 2 to row 3 to change a zero row to a nonzero row.
Additional Problem

Solution:
A lot of people failed to solve this problem. Everyone should read this solution carefully. Let \(f(x) = \frac{a}{2} + bx + cx^2 \). Then, \(f(1) = 2 \) gives us the equation \(f(1) = a + b + c = 2 \). Similarly, \(f(-1) = -2 \) gives us \(f(-1) = -a - b + c = -2 \). Finally, \(f(2) = 9.5 \) gives us \(f(2) = \frac{a}{2} + 2b + 4c = \frac{19}{2} \). Hence, the matrix equation becomes:

\[
\begin{bmatrix}
1 & 1 & 1 \\
-1 & -1 & 1 \\
\frac{1}{2} & 2 & 4
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
2 \\ -2 \\ \frac{19}{2}
\end{bmatrix}.
\]

Adding the first row to the second row, and substituting the second row for this, we get:

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 2 \\
\frac{1}{2} & 2 & 4
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
2 \\ 0 \\ \frac{19}{2}
\end{bmatrix}.
\]

This means that \(c = 0 \). Finally, substituting the first equation by the first row minus twice the third row, we get:

\[
\begin{bmatrix}
0 & -3 & -7 \\
0 & 0 & 2 \\
\frac{1}{2} & 2 & 4
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
-17 \\ 0 \\ \frac{19}{2}
\end{bmatrix}.
\]

The first equation is \(-3b - 7c = -17\), but because \(c = 0 \), we get \(b = \frac{17}{3} \). Thus, from the first equation, we get \(a = -\frac{11}{3} \). The function becomes \(f(x) = -\frac{11}{3}x + \frac{17x}{3} \).

Problem 2.4.6

Solution:
If you got this problem wrong, you need to go over matrix multiplication and addition! Now, on the one hand \((A + B)^2 = \begin{bmatrix} \frac{10}{3} & 4 \\ 6 & \frac{6}{3} \end{bmatrix} = A^2 + AB + BA + B^2 \). But on the other hand \(A^2 + 2AB + B^2 = \begin{bmatrix} \frac{16}{3} & 2 \\ \frac{3}{3} & \frac{6}{3} \end{bmatrix} \). Hence, in this case, \((A + B)^2 \neq A^2 + 2AB + B^2 \).

Problem 2.4.14

1. True (\(A^2 \) is only defined when \(A \) is square).

2. False (is \(A \) is an \(m \) by \(n \) matrix and \(B \) is an \(n \) by \(m \) matrix, then \(AB \) is and \(m \) by \(m \) matrix and \(BA \) is an \(n \) by \(n \) matrix).

3. True (for the same reasons as above).

4. False (take \(B = 0 \). This case comes up constantly, so do not dismiss it).
Problem 2.4.26

Solution:
Columns of A times rows of B

\[
\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 0 \\ 1 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 6 & 6 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 6 & 6 & 0 \\ 6 & 6 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 4 & 8 & 4 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 10 & 14 & 4 \\ 7 & 8 & 1 \end{bmatrix} = AB.
\]