Nilpotent (and soluble?) Hopf Galois Structures

Nigel Byott

University of Exeter, UK

Omaha, 29 May 2013
Let L/K be a finite Galois extension of fields, with $\Gamma = \text{Gal}(L/K)$.

- the action is compatible with the multiplication on N:
 $$\alpha \cdot (xy) = \text{mult} \left(\Delta(\alpha) \cdot (x \otimes y) \right),$$
 $$\alpha \cdot 1 = \epsilon(\alpha)1 \text{ for all } \alpha \in K[G], \ x, y \in L,$$

 where Δ is the comultiplication and ϵ the augmentation;

- (“Galois”, i.e. non-degeneracy, condition): the following map is bijective:
 $$\theta : L \otimes_K H \rightarrow \text{End}_K L, \quad \theta(x \otimes h)(y) = x(h \cdot y).$$

In particular, this means $\dim_K H = [L : K]$ and H acts faithfully on L.

Nigel Byott (University of Exeter, UK)
Greither and Pareigis (1987) showed the Hopf Galois structures correspond bijectively to subgroups G of the (large) group $\text{Perm}(\Gamma)$ which are \textbf{regular} (i.e. given $x, y \in \Gamma$ there is a unique $g \in G$ with $g \cdot x = y$) and are normalised by $\lambda(\Gamma)$, the left translations by Γ.

We can turn around the relation between Γ and G:
Hopf Galois structures correspond to equivalence classes of regular embeddings

$$\Gamma \longrightarrow \text{Hol}(G) \subseteq \text{Perm}(G),$$

where G is an abstract group with $|G| = |\Gamma|$, and

$$\text{Hol}(G) = \{(g, \alpha) \mid g \in G, \alpha \in \text{Aut}(G)\},$$

with $(g, \alpha)(h, \beta) = (g\alpha(h), \alpha\beta)$, i.e.

$$\text{Hol}(G) = \lambda(G) \rtimes \text{Aut}(G).$$

Two embeddings are deemed to be equivalent if they are conjugate by an element of $\text{Aut}(G)$.

The **type** of the HGS is (the isomorphism class of) G.

We can use this to count the HGS on a field extension L/K with given Galois group Γ.
Example: Cyclic Extensions of Prime-Power Degree

For $\Gamma = C_{p^r}$ with p an odd prime, there are p^{r-1} Hopf Galois structures, all with $G = C_{p^r}$ [Kohl].

The case $p = 2$ is more complicated: for $\Gamma = C_{2^r}$,

- if $r = 1$, there is one Hopf Galois structure, with $G = C_2$;
- if $r = 2$, there is one Hopf Galois structure with $G = C_4$ and one with $G = C_2 \times C_2$;
- if $r \geq 3$, there are $3 \cdot 2^{r-2}$ Hopf Galois structures, 2^{r-2} each for $G = C_{2^r}, Q_{2^r}, D_{2^r}$.
Non-abelian HGS on abelian extensions

“Most” abelian Γ admit a non-abelian HGS.

Theorem (L. Childs + NB)

Let Γ be an abelian group of order n. Then a Galois field extension with group Γ admits a non-abelian HGS if any of the following hold:

(i) Γ contains a non-cyclic p-subgroup of order $\geq p^3$;

(ii) n is even and $n > 4$;

(iii)

$$\Gamma = \prod_{p \in \Theta} (C_p \times C_p) \times \prod_{p \in \Psi} C_{p^e},$$

where Θ, Ψ are disjoint sets of primes, and either

(a) $(q, p - 1) > 1$ for some $p, q \in \Theta \cup \Psi$, or

(b) $(q, p + 1) > 1$ for some $p \in \Theta, q \in \Theta \cup \Psi$.

On the other hand, there are some n, such as $n = 3^2 \times 11^2$ or $7^3 \times 19$, such that, if $\Gamma = C_n$, then every Hopf-Galois structure must have type C_n, even though non-abelian groups G of order n exist.
Counting Nilpotent Hopf Galois Structures

A finite group G is **nilpotent** if it is the direct product of its Sylow subgroups,

$$G = \prod_p G_p,$$

(e.g. if G is abelian or a p-group).

Let Γ be nilpotent. Define $e_{\text{nil}}(\Gamma)$ to be the number of nilpotent HGS on a Galois extension with group Γ.

This is the number of equivalence classes of regular embeddings

$$\beta : \Gamma \longrightarrow \text{Hol}(G)$$

as G ranges through nilpotent groups of order $|\Gamma|$.

Since each G_p is a **characteristic** subgroup of G (i.e. it is fixed under all automorphisms), we have

$$\text{Aut}(G) = \prod_p \text{Aut}(G_p), \quad \text{Hol}(G) = \prod_p \text{Hol}(G_p).$$
We are looking for

\[\beta : \prod_p \Gamma_p \rightarrow \prod_q \text{Hol}(G_q). \]

We can write \(\beta \) as a “matrix” \((\beta_{pq})\) where \(\beta_{pq} : \Gamma_p \rightarrow \text{Hol}(G_q) \).

Lemma

\[\beta \text{ is regular } \Leftrightarrow \text{ each } \beta_{pp} \text{ is regular.} \]

If \(\beta \) is a regular embedding then, for \(p \neq q \), the group \(\beta_{pq}(\Gamma_p) \) must centralise the regular subgroup \(\beta_{qq}(\Gamma_q) \) of \(\text{Hol}(G_q) \), so must be a \(q \)-group. Hence \(\beta_{pq}(\Gamma_p) \) is trivial.

Hence \(\beta \) is a regular embedding if and only if \((\beta_{pq})\) is a diagonal matrix whose diagonal entries are regular embeddings.
Hence we have

Theorem

For a nilpotent group Γ:

$$e_{\text{nil}}(\Gamma) = \prod_p e_{\text{nil}}(\Gamma_p).$$

Corollary (Nilpotent HGS on cyclic extensions)

Let $r(n) = \prod_{p|n} p$, the radical of n. Then

$$e_{\text{nil}}(C_n) = \begin{cases} \frac{n}{r(n)} & \text{if } 8 \nmid n; \\ \frac{3}{2} \left(\frac{n}{r(n)} \right) & \text{if } 8 | n. \end{cases}$$

(But a cyclic extension may also have HGS which are not nilpotent!)
HGS of nilpotent type

Theorem

Suppose a Galois extension with group Γ admits a HGS of type G, with G nilpotent. Then Γ is soluble.

Recall this means we have subgroups

$$1 = \Gamma_0 \triangleleft \Gamma_1 \triangleleft \cdots \triangleleft \Gamma_s = \Gamma$$

with each Γ_{i+1}/Γ_i abelian.

Let J be a group with $|J| = p^r m$, where p is prime and $p \nmid m$. Then a **Hall p'-subgroup** of J is a subgroup H with $|H| = m$. Unlike Sylow p-subgroups, these don’t always exist.

e.g. If $J = A_5$ of order 60, then J has a Hall p'-subgroup for $p = 5$ but not for $p = 2$ or $p = 3$.

In fact, J has a Hall p'-subgroup for every $p \Leftrightarrow J$ is soluble (Hall, 1937).
Now suppose we have a regular embedding

\[\beta : \Gamma \longrightarrow \text{Hol}(G) \]

with \(G = \prod_p G_p \) nilpotent.

For each \(p \), let

\[H_p = \prod_{q \neq p} G_q, \]

a Hall \(p' \)-subgroup of \(G \). Then \(G_p \) is characteristic in \(G \). (It consists of all elements of order prime to \(p \).)

Define

\[\Delta_p = \{ \gamma \in \Gamma \mid \beta(\gamma) \cdot e_G \in H_p \}. \]

Since \(\beta(\Gamma) \) is regular, it is obvious that \(\Delta_p \) is a subset of \(\Gamma \) has size \(|H_p| \).
Since H_p is characteristic in G, we can prove:

Lemma

Δ_p is a subgroup of Γ.

Proof. Let $\gamma \in \Delta_p$, say $\beta(\gamma) \cdot e_G = h \in H_p$.

Then $\beta(\gamma) = (h, \alpha)$ for some $\alpha \in \text{Aut}(G)$.

Given another $\gamma' \in \Delta_p$, say $\beta(\gamma') = (h', \alpha')$, we have

$$\beta(\gamma \gamma') = (h, \alpha)(h', \alpha') = (h\alpha(h'), \alpha \alpha')$$

and $\beta(\gamma \gamma') \cdot e_G = h\alpha(h') \in H_p$ since $\alpha(H_p) = H_p$. So $\gamma \gamma' \in \Delta_p$.

So Δ_p is a Hall p'-subgroup of Γ.

Since Γ has a Hall p'-subgroup for each p, Γ is soluble.
Must a HGS on an abelian extension be soluble?

Suppose an extension with Galois group Γ admits a HGS of type G.

We have shown that

\[G \text{ nilpotent} \Rightarrow \Gamma \text{ soluble}. \]

Here is a strategy (as yet not completely implemented) to prove a weak converse:

Theorem?

\[\Gamma \text{ abelian} \Rightarrow G \text{ soluble}, \]

i.e. every HGS on an abelian extension must be soluble.

Remark: One might wonder if Γ soluble \Leftrightarrow G soluble, or, more generally, whether Γ and G always have the same composition factors. This turns out not to be the case. It is not difficult to construct an example with $\Gamma = A_4 \times C_5$ and $G = A_5$. I do not know of any examples where Γ is insoluble but G is soluble.
So suppose Γ is abelian, and we have a regular embedding

$$\beta : \Gamma \hookrightarrow \text{Hol}(G).$$

If H is a characteristic subgroup of G then β induces a homomorphism

$$\bar{\beta} : \Gamma \longrightarrow \text{Hol}(G/H),$$

whose image is a transitive abelian subgroup of $\text{Hol}(G/H)$. Hence this image is regular on G/H.

Let $\Sigma = \ker(\bar{\beta})$. Then $|\Sigma| = |H|$ and the abelian group Σ acts regularly on H.

It will suffice to show G/H and H are both soluble.

Inductively, we can therefore reduce to the case where G is characteristically simple.
Now a characteristically simple group H has the form

$$H = T \times T \ldots \times T$$

for some simple group T and some $m \geq 1$.

So we need to show that we cannot have a regular embedding

$$\Gamma \hookrightarrow \text{Hol}(T^m)$$

where Γ is abelian and T is a non-abelian simple group.

In this case

$$\text{Aut}(T^m) = (\text{Aut}(T)^m) \rtimes S_m = \text{Aut}(T) \wr S_m,$$

where S_m is the symmetric group permuting the m factors.
Aside: Classification of Finite Simple Groups

The finite simple groups are

- cyclic of prime order (the only abelian ones!);
- alternating groups A_n for $n \geq 5$;
- (classical or exceptional) groups of Lie type: there 16 families of these, of which the easiest to describe is

$$\text{PSL}_n(q), \quad n \geq 2, \quad q \text{ a prime power};$$

- 26 sporadic simple groups (smallest is the Matthieu group M_{11} of order 7290; largest is the Monster of order approx 8×10^{53}).
Back to HGS on abelian extensions

Can we have a regular embedding of an abelian group Γ in

$$\text{Hol}(T^m) = T^m \rtimes (\text{Aut}(T)^m \rtimes S_m)$$

when T is a non-abelian simple group?

$\text{Aut}(T)$ contains the subgroup of inner automorphisms $\text{Inn}(T) \cong T$, and, as a consequence of the Classification of Finite Simple Groups, we know that the quotient

$$\text{Out}(T) = \frac{\text{Aut}(T)}{\text{Inn}(T)}$$

is (soluble and) small relative to T.

e.g. for T sporadic, $|\text{Out}(T)| \leq 2$.
Projecting Γ into successive quotients in the sequence

$$1 \rightarrow T^m \rightarrow (T \rtimes \text{Inn}(T))^m \rightarrow \text{Hol}(T)^m \rightarrow \text{Hol}(T)^m \rtimes S_m,$$

we get abelian subgroups

$$\Gamma_1 \leq S_m \quad \Gamma_2 \leq \text{Out}(T)^m, \quad \Gamma_3 \leq \text{Inn}(T)^m \cong T^m, \quad \Gamma_4 \leq T^m$$

such that

$$|\Gamma_1| |\Gamma_2| |\Gamma_3| |\Gamma_4| = |\Gamma| = |T|^m.$$

Why shouldn’t this be possible? A non-abelian simple group should not contain a “large” abelian subgroup.

There is a theorem which (almost) guarantees this:
Theorem (Vdovin, 1999)

Let T be a non-abelian simple group not of the form $\text{PSL}_2(q)$, and let A be an abelian subgroup of T. Then $|A|^3 < |T|$.

[Note: $C_5 < A_5$ and $5^3 > 60$. But $A_5 \cong \text{PSL}_2(5) \cong \text{PSL}_2(4)$.]

Proof: Use the Classification of Finite Simple Groups.

It follows that if A is an abelian subgroup of T^m then $|A|^3 < |T^m|$.
Thus, for a particular non-abelian simple group T, if we know $|T|$ and $|\text{Out}(T)|$, we have upper bounds on $|\Gamma_i|$ for $i = 1, \ldots, 4$, and we should be able to show $|\Gamma| < |T^m|$.

This (or a slight variation) works for the alternating groups A_n, for $\text{PSL}_n(q)$ (including $n = 2$) and for the sporadic groups. It still needs to be checked for the other families of groups of Lie type.