Goal: Construct Θ-stratifications
\[X = X^{ss} \cup U S_a \]
along with good moduli space \(q: X^{ss} \rightarrow M \)

Keywords from first lecture:
- Filtrations \(F: \Theta \rightarrow X \)
- Numerical invariant \(\mu(f) \)
- Stability, HN problem

Thm A (HL):
If \(X \) is Θ-reductive, HN problem has a solution, and only finitely many HN types in bounded family \(\) defines Θ-stratification

Thm B (Alper-HL-Heinloth):
If \(X \) is bounded, it has a GMS iff
1) \(X \) is Θ-reductive, 2) unpunctured inertia, 3) closed points have reductive autom. groups.

Today: Discuss this theorem and applications to moduli of sheaves on a K3 surface

What is a Θ-reductive stack?
Def: A stack is Θ-reductive if...
- For any family over DVR \(\text{Spec}(R) \rightarrow X \), any filtration of the generic point extends to a filtration of the family

Ex 1: \(Y \) projective scheme, \(X = \text{Coh}(Y) \)
- Amounts to compactness of flag scheme
- Fails for \(\text{Bun}(Y) \)

Ex 2: More generally, proof can be adapted to \(X = \{ \text{objects in } A^3 \}, \) an abelian category

Ex 3: Quotient stacks \(\text{Spec}(A)/G \) are reductive

Prop: if \(X \) is Θ-reductive and a numerical invariant \(\mu \) defines a Θ-stratification, then \(X^{ss} \) is Θ-reductive.
Def: given a family over a DVR, we say that another map is a modification if the maps are isomorphic over the generic point \(\text{Spec}(K) \):

\[
\text{Spec}(R) \to X
\]

Ex: family of bundles on \(C \times \text{Spec}(R) \), \(E_0 = \) special fiber, \(F \subset E_0 \) sub-bundle, \(E' = \ker(E \to i_*(E_0/F)) \) — new bundle, elementary modification

Def: \(X \) has unpunctured inertia if for any family over a DVR, one can find an elementary modification such that

1) any connected component of \(\text{Aut}(\text{generic fiber}) \) specializes to special fiber, or
2) at finite-order generic automorph.

Amplifications

If \(q: X \to M \) is a good moduli space, then

\[\longrightarrow M \text{ is separated if any modification over a DVR can be factored into sequence of elementary modifications} \]

\[\longrightarrow M \text{ is proper if it is separated and } X \text{ satisfies existence part of valu. crit.} \]

Thm (semistable reduction):
Given a \(\Theta \)-stratification of \(X \), any family \(\text{Spec}(R) \to X \) with semistable generic point is related by elementary modification to a semistable family

Consequence: Can specify conditions on \(X \) s.t. the good moduli space of \(X^{ss} \) is proper
Slope semistability

Set up: $A^{0}D^{b}(Y) \text{ heart of bounded } t\text{-structure}$

$\sigma: v: K_{0}(Y) \rightarrow \Lambda = K_{0}^{num}(Y)$

$\mathcal{L}: \Lambda \rightarrow \mathbb{C}, \text{ -deg}(v) + \text{tr}(v) := \mathcal{L}(v)$

Pre-stability condition: all $E \in A$ have HN filtrations

Hypothesis:

$X_{v}(B) := \left\{ E \in D^{b}(Y \times B) \text{ s.t. } \right\}$

$E_{b} \in A \text{ for all } b \in B$ is an algebraic stack

Ex 1: Slope semistability in Coh(Y)

Ex 2: Any Bridgeland stability condition with A noetherian

Rem: can work in more general categories, and can define X directly from A

Moduli spaces

Central charge defines a line bundle: on X_{v}

Write $\mathcal{L}(E) = \chi(E \otimes \omega_{x}), \omega_{x} \in K_{0}^{num}(Y) \otimes \mathbb{C}$

\[\begin{array}{c}
\mathbb{X} \times Y \\
\downarrow
\end{array} \]

\[
\begin{array}{c}
\mathcal{L} \circ \text{ch}_{1}(\Phi E_{\text{univ}}^{Y \rightarrow x}(\text{Im}(\frac{-\omega_{x}}{\mathcal{L}(E)}))) \\
\text{b} \circ \text{ch}_{2}(\Phi E_{\text{univ}}^{Y \rightarrow x}(\text{Im}(\omega_{x}))) \\
\end{array}
\]

Consequences of main theorems: if X_{v}^{ss} bounded

$\forall v \in \Lambda$, then

$\rightarrow X$ has Θ-stratification by HN type

$\rightarrow X_{v}^{ss}$ has proper good moduli space

Main example: From now on, we consider only Bridgeland stability on a smooth surface

\Rightarrow we can study Donaldson invariants
We will always work with K-theoretic invariants:

\[F \in K^0(X) \]

where \(E \in K^0(Y) \) is obtained from \(Y \) by simple operations

\[R_{q_*} : D^b(X^{ss}) \to D^b(M^{ss}_v) \] is well-defined by properties of GMS

Definition

\[\mathcal{I}_v^\sigma(F) = \chi(M^{\sigma-ss}_v, R_{q_*}(F)) = \chi(X^{\sigma-ss}_v, F) \]

Question: how do \(X^{\sigma-ss}_v \) and \(I_v^\sigma(E) \) depend on stability condition \(\sigma \)? For nice results, we need to regard \(X^{\sigma-ss}_v \) as a derived stack.

- Algebraic geometry built commutative DGA's
 \[A \left[e_1, \ldots, e_r ; d e_i = a_i \in A \right] \]
 \[I_v^\sigma(F) = \text{integral over derived stack} \]

Correct Donaldson invariants of surfaces

A simple analogy for derived algebraic geometry:

\[\text{reduced rings } \to \text{ rings } \to \text{ CDGA's} \]

On affine objects:

\[H_0(A)_\text{red} \leftarrow H_0(A) \leftarrow A_0 \]

Analogous picture for derived schemes / stacks:

\[\mathfrak{X}^{cl} \hookrightarrow \mathfrak{X}^{rig}, \text{ same underlying points} \]

Virtual structure sheaf: Note \(\bigoplus H_i(A_\bullet) \) is a coherent \(H_0(A_\bullet) \)-module

\[\mathcal{O}_{\mathfrak{X}^{vir}} := \bigoplus H_i(A_\bullet)[i] e_i Y^{(i)}(x) \]

Classical shadow of derived world:

Given \(F \) on derived stack \(\mathfrak{X}^{rig} \),

\[\chi(\mathfrak{X}^{rig}, F) = \chi(\mathfrak{X}^{rig}, F^{rig} \otimes_* \mathcal{O}_{\mathfrak{X}^{rig}}) = \chi(\mathfrak{X}^{cl}, \mathcal{L}^*(F) \otimes \mathcal{O}_{\mathfrak{X}^{cl}}) \]

Lecture 2 (collapsed) Page 5
Wall crossing

Situation: \(\text{Fix } \nu \in K_0^{\text{num}}(S) \)
- \(\sigma \) varies in a complex manifold \(\text{Stab}^*(s) \)
- in complement of real codim 1 walls, \(\chi^{s-ss}_\nu \) is constant
- let \(\sigma_0 \in \text{wall}, \sigma_1 \in \text{different chambers}, \chi^{s-ss}_\nu \) has GMS, and \(\chi^{s-ss}_\nu \rightarrow \chi^{s-ss}_{\sigma_1} \)
in some cases, as in last lecture

\[\chi^{s-ss}_\nu = \chi^{s-ss}_{\sigma_1} \cup \bigcup_{\sigma \in \text{Stab}^*(s)} \chi_{\sigma} \bigcup_{\sigma \in \text{Stab}^*(s)} \chi_{\sigma} \cup \bigcup_{\sigma \in \text{Stab}^*(s)} \chi_{\sigma} \]

Hypothesis: \(\forall E \in A, L^{\text{vir}}_{x,E} = \text{RHom}(E, E(1))^* \)
has no cohomology in \(\deg \leq -1 \), i.e.,
\(\text{Hom}(E, E(1)) = 0 \)
for \(\nu \leq 2 \)

Rem: Holds automatically when \(A = \text{Cod}(S) \)
or when \(S \) is K3

Wall crossing formula

Thm: Under the previous hypotheses, we have
\[
I^0_\nu(S) - I^0_\mu(S) = \sum_{\alpha} \chi(\chi^{s-ss}_\nu \times \ldots \times \chi^{s-ss}_\nu, \text{centers of strata})
\]

Decompose \(L^{\text{vir}}_{x,E} \mid_{\text{center}} = L^+ \oplus L^0 \oplus L^- \)
\(E_x = \text{Sym}(L^+) \otimes \text{Sym}(L^-) \otimes \det(L^+) \otimes \det(L^-) \)

Proof idea:
Local cohomology uses derived AG, and
modular interpretation of the strata

Uses:
1) compute \(I^0_\nu(S) - I^0_\mu(S) \)
2) come up with explicit formulas
 For \(I^0_\nu \) by wall crossing to where
\(\chi^{s-ss} = \emptyset \)

Nagging question: Combinatorial structure?
Birational geometry -- K3 case

If v is primitive and σ generic, then

$$M^{\sigma-ss}_v = \text{smooth projective hyperkähler}$$

Restrict to class of CY manifolds birationally equivalent to $M^{\sigma-ss}_v$

Thm (Bayer-Macri): Any two manifolds in this class can be connected by a sequence of birational modifications of the form:

$$M^{\sigma_i-ss}_v \rightarrow M^{\sigma_i-ss}_v$$

For some (twisted) K3 surface S

We now have a diagram:

Local models for flops

Base change the picture:

$$\begin{array}{ccc}
\mathbb{E}^{\sigma-ss}_v & \leftarrow & \text{Spec}(A)/\Gamma_l \\
\downarrow & & \downarrow \\
M^{\sigma-ss}_v & \leftarrow & \text{Spec}(A^G) \\
\end{array}$$

One can show, using self-duality $L_x \cong L^{*}_{\infty}$

Thm: $\text{Spec}(A)$ is zero fiber of a "weak" algebraic moment map $\mu: \text{Spec}(B) \rightarrow \mathfrak{g}^*$ for a smooth affine G-scheme.

Application: we recently used this to prove that any two smooth projective CY manifolds in birational class of $M^{\sigma-ss}_v$ have equivalent derived categories of coherent sheaves.