When X is a projective variety, $M(X)$ often has analogs in algebraic geometry.

\Rightarrow easier, thanks to language of stacks

First issue:

some objects are parameterized by continuous parameters

Ex: moduli of curves as an algebraic stack

= functor of points

For any scheme B, $M_g(B)$:= \{ smooth families of genus g curves over B \}

An algebraic stack which is "Deligne-Mumford" (DM)

\Rightarrow finite automorphism groups

Why study moduli problems? Two reasons...

A. Classify geometric objects
 leads to deeper understanding of the structure of these objects

Ex: compact Lie groups vs. theory of root data

B. Explosion of interest in moduli since 80's

New invariants in differential geometry:
- pseudoholomorphic curves, gauge theory

Idea: Given a manifold X...

Associate a moduli problem $M(X)$, then "count" $\# M(X)$, objects up to isomorphism.
Gold standard:

Thm (Keel-Mori): Any separated DM stack \mathcal{M} has a coarse moduli space $\mathcal{M} \to X$

Ignore: space vs. scheme vs. quasi-projective scheme

This suggests a general approach:

1) Identify a functor of points

2) Show that it is an algebraic stack

 e.g. Artin's criteria

3) Check that it is separated and DM, and apply Keel-Mori theorem

Problem (for either goals A or B): Many stacks of interest are not DM, so (3) fails

Today: A version of this program which works for general algebraic stacks

Gold standard:

Fix smooth genus g curve, C

$$\operatorname{Bun}_{r,d}(B) := \begin{cases}
\text{vector bundles on } C \times B \\
\text{deg}=d, \text{rank}=r \text{ on fibers}
\end{cases}$$

This is an algebraic stack

can discuss line bundles, sheaves, cohomology, open/closed substacks

Ex: a line bundle is a natural assignment

$$(\text{maps } B \to \operatorname{Bun}_{r,d}) \to (\text{line bundles on } B)$$

But doesn't help much with goal A, classification:

$\operatorname{Bun}_{r,d}$ is unbounded, non-separated

(look at degenerates of $\mathcal{O}_C(-n) \oplus \mathcal{O}_C(n)$)
More interesting: sheaves on a surface \(S \)

\[
\mathcal{E}_V = \left\{ \text{coherent sheaves on } S \text{ with numerical } K\text{-theory class } v \right\}
\]

Exact same structure, but HN stratification depends on an ample class \(H \in \text{NS}(S)_{\mathbb{R}} \):

\[
\mathcal{X}_V = \mathcal{X}_V^{H=\text{ss}} \cup \bigcup \mathcal{S}_\alpha \quad \alpha = \left\{ (v_1, \ldots, v_t) \in K^{\text{num}}(S) \right\}
\]

Donaldson invariants of \(S \) arise as "integrals"

\[
\int_{H=\text{ss}} \left(\text{tautological } \right) \quad \int_{M^V} \left(\text{cohomology class} \right)
\]

Q: How do they depend on \(H \)?

Ex: Bridgeland semistable objects in \(\mathcal{A} \subset D^b(S) \)

New techniques needed
Good moduli spaces:
\(\mathcal{X} \) is a finite type stack, affine diagonal

Def: a good moduli space (GMS) is a map to a space
\[q : \mathcal{X} \to M \]
s.t.
1. \(q^* : \text{Qcoh}(\mathcal{X}) \to \text{Qcoh}(M) \) is exact
2. \(q^* (\Theta) = M \)

Properties:
1. Fibers of \(q \) = "S-equivalence" classes
2. Universal for maps to spaces (categorical quotient)
3. Example: \(X^{ss}/G \to X^{ss}/G \), reductive GIT
4. If \(M \) is proper, \(\dim H^*(\mathcal{X},\mathcal{E}) < \infty \)
5. Alper-Hall-Rydh '16: \(\mathcal{X} \) is locally over \(M \), looks like \(\text{Spec}(\mathcal{A})/G \to \text{Spec}(\mathcal{A}/G) \)

Solving moduli problems:

Stability
\(\mathcal{X} = \text{stack of coherent sheaves on } S \)

Rees correspondence:
\[\begin{align*}
& (\mathbb{Q} \text{-weighted filtrations } \cdots \mathcal{E}_w \mathcal{E}_{w_1} \cdots) \\
\Downarrow \\
& (C^* \text{-equiv. coherent sheaves on } S \times C^1) \\
\Downarrow \\
& (\text{maps of stacks } \Theta := C^* \to \mathcal{X})
\end{align*} \]

Give an intrinsic formulation of the HN filtration:

\[\text{a canonical map } F : \Theta \to \mathcal{X} \]

How to find it? Use numerical invariant.

Given \(F : \Theta \to \mathcal{X} \), define: (assuming \(\text{deg}(v) = 0 \))
\[\mu(F) = \frac{-\sum w \text{deg}(\mathcal{E}_w/\mathcal{E}_{w_1})}{\sum w^2 \text{rank}(\mathcal{E}_w/\mathcal{E}_{w_1})} \]
Main theorem of GIT:
Let $q : Y \to \Theta$ be a good moduli space, and fix a form $b \in H^4(Y)$.

Thm (HL, Hoskins, Zamora): Among all maps $f : \Theta \to X$, there one which maximizes $\mu(f)$, unique up to ramified cover $\Theta \to \Theta$.

Now let X be arbitrary, and fix $x \in H^2(X)$ and $b \in H^4(Y)$.
1) $p \in X$ is semistable if $f^*(x) \leq 0$ in $H^2(\Theta) \cong \mathbb{Z}$ for all filtrations of p
2) [HN problem] For unstable $p \in X$, find f which maximizes
$$\mu(f) = \frac{f^*(x)}{\sqrt{\det b}}$$

Might lead to a Θ-stratification:
$$X = X^{ss} \cup U \Sigma,$$
where Σ parameterize filtered objects $\Theta \to X$
Σ^{ss} parameterize graded objects $*/G \to X$

Ideal solution to moduli problem:
Θ-stratification where X^{ss} and Z^{ss} have GMS

Also includes variation of GIT quotient:

Thm: $\forall h \in NS(Y)^R_\Theta$, numerical invariant
$$\mu = h/\sqrt{\det b}$$
defines a Θ-stratification
$$X = X^{ss} \cup U S,$$
where $X^{ss}(k)$ and S_i^{ss} have GMS which are projective \overline{Y}

if X is irreducible, as l varies get birational modifications
Meta-principal:
Birational geometry of moduli spaces should be understood as variation of stability in some larger moduli problem with good moduli space

\[q: X \rightarrow Y \]

Ex: Smyth classified all DM modular compactifications of \(\overline{M}_{g,n} \)

Would be nice to run MMP on \(\overline{M}_{g,n} \) by varying stability on moduli of all curves

Ex: Bayer-Macri prove that if

\[X \rightarrowtail M_{g}^{hss}(S), \text{then} \]

\[\text{CY k3} \quad X \in \{ \text{Bridgeland semistable} \} \]

\[\{ \text{complexes on some twisted k3} \} \]

We will use this in the next lecture to study the local structure of flops

Useful concept for constructing \(\Theta \)-stratifications

Def: \(Y \) is \(\Theta \)-reductive if for any family over a discrete valuation ring, \(\text{Spec}(R) \rightarrow Y \), any filtration over the generic fiber extends uniquely to the special fiber.

Thm A (HL): Let \(X \) be a \(\Theta \)-reductive algebraic stack. Then a numerical invariant \(\mu \) defines a \(\Theta \)-stratification if and only if

1) Every unstable point has a unique HN filtration

2) In a bounded family \(\text{Spec}(A) \rightarrow Y \), only finitely many types of HN filtrations arise

Rem: main theorem of GIT is a special case
The notion of Θ-reductive stack is useful for constructing good moduli spaces as well.

Thm B (Alper-HL-Heinloth): Let \mathcal{X} be locally finite type with affine diagonal. Then \mathcal{X} has a good moduli space if and only if

1) \mathcal{X} is Θ-reductive,

2) closed points of \mathcal{X} have reductive automorphism groups, and

3) \mathcal{X} has "unpunctured inertia"

These two theorems provide a program for analyzing general moduli problems, analogous to Keel-Mori theorem.

Next time: Discuss what Thm B means, and applications to Bridgeland semistable complexes.