Let X_r be a del Pezzo surface of degree $9-r$, with $r \geq 3$, and let $L = k[x_{L_1}, \ldots, x_{L_N}]$ be the polinomial ring whose variables are indexed by the (-1)-curves L_i on X_r. There is a natural grading on L by the elements of the group $\text{Pic}(X_r) \cong \mathbb{Z}^{r+1}$, obtained by letting $\deg(x_{L_i}) = L_i$, and extending by multiplicativity.

There is a surjective ring homomorphism $\pi : L \to \text{Cox}(X_r)$. The morphism π is graded with respect to the natural $\text{Pic}(X_r)$-grading on both L and $\text{Cox}(X_r)$. Denote by P the kernel of this morphism. Since π is a graded ring map, the ideal P is generated by homogeneous elements.

The purpose of this note is to prove that P is generated by homogeneous elements whose $\text{Pic}(X_r)$-degree is a nef divisor.

Lemma 1. Let $D \in \text{Pic}(X_r)$ be an effective divisor. There are $0 \leq k \leq r$ disjoint (-1)-curves E_1, \ldots, E_k on X_r, positive integers n_1, \ldots, n_k and a nef divisor $N \in \text{Pic}(X_r)$ such that

1. $D = n_1E_1 + \ldots + n_kE_k + N$;
2. for all $i \in \{1, \ldots, k\}$ we have $E_i \cdot N = 0$;

Moreover, this decomposition is unique: the (-1)-curves E_i and the positive integers n_i are characterized by the property that $E_i \cdot D = -n_i$.

Remark. In case $k \geq 1$, a divisor satisfying the conditions in the conclusion of the lemma is clearly not nef: it suffices to intersect it with E_1 to get a negative intersection number with an effective curve.

Proof. Proceed by induction on the anticanonical degree $d := -K_{X_r} \cdot D$ of D. If $d = 1$, then an effective divisor D on X_r is either a (-1)-curve, or $r = 8$ and $D = -K_{X_8}$. In both cases the statement of the lemma is clear.

Suppose that $d \geq 2$. If for every (-1)-curve $E \subset X_r$ we have $E \cdot D \geq 0$, then D is a nef divisor, and we may let $k = 0$. Together with the remark following the statement of the lemma, this concludes this case. Thus we may reduce to the case in which D is effective and there is a (-1)-curve $E \subset X_r$ such that $E \cdot D < 0$. Since the divisor D is effective, this means that E is an irreducible component of D and therefore that $D - E$ is an effective divisor. Since the anticanonical degree of $D - E$ is $d - 1$, by the inductive hypothesis we know that $D - E = m_1E_1 + \ldots + m_hE_h + N$, where $h \geq 0$, $m_i > 0$, the E_i's are divisor classes of disjoint (-1)-curves on X_r and N is a nef divisor on X_r, such that $N \cdot E_i = 0$. Thus we have

$$D = E + n_1E_1 + \ldots + n_hE_h + N$$

Since $D \cdot E < 0$ and $N \cdot E \geq 0$, it follows that either $E = E_i$, for some $i \in \{1, \ldots, h\}$, or $E_i \cdot E = N \cdot E = 0$. In either case, the first part of the lemma follows.

The uniqueness of the decomposition of D is an immediate consequence of the obvious characterization of the (-1)-curves E_i's as the only (-1)-curves with negative intersection with D. \hfill \Box

We may obtain the decomposition of lemma 1. as an application of the Zariski decomposition of the divisor D: consider the linear system $|D|$ on X_r. Let E_1, \ldots, E_k be the irreducible components of dimension one in the base locus B of $|D|$, and let n_i be the multiplicity of E_i in B. The divisor $N = D - (n_1E_1 + \ldots + n_kE_k)$ is nef, since it only has isolated points as
base locus. The only statements left to show are that $N \cdot E_i = 0$ and $E_i \cdot E_j = -\delta_{ij}$. These equalities follow from the fact that the base locus of the complete linear system associated to a nef divisor on a del Pezzo surface is either basepoint-free or has a unique basepoint, in the case $r = 8$ and $D = -K_{X_8}$.

Let D be a divisor in $Pic(X_r)$. We denote by L_D the vector space of homogeneous elements of the ring L of $Pic(X_r)$–degree D. Observe that we may find a vector space basis of L_D consisting of monomials of L. Using lemma 1. and its notation, we may write $D = n_1E_1+\ldots+n_kE_k+N$.

Lemma 2. With notation as above, we have $L_D = x_{E_1}^{n_1} \cdots x_{E_k}^{n_k} \cdot L_N$.

Proof. Proceed by induction on the anticanonical degree d of D. If $d = 0$, there is nothing to prove. Suppose that $d \geq 1$ and let $m = x_{L_1}^{\ell_1} \cdots x_{L_N}^{\ell_N}$ be a monomial in L_D. There is nothing to prove if D is either nef or not effective. Suppose therefore that D is effective but not nef. By the definition of the $Pic(X_r)$–grading on L, the degree D of m can be written as $\ell_1 L_1 + \ldots \ell_N L_N$. We may assume also that the numbering of the (-1)–curves L_i’s is such that $L_1 = E_1$. Since $D \cdot E_1 < 0$, the exponent ℓ_1 of x_{L_1} cannot be zero, and thus $m = x_{E_1} m'$, where m' is a monomial in $L(D-E_1)$. By construction, $D-E_1 = (n_1-1)E_1 + n_2 E_2 + \ldots + n_k E_k + N$ is an effective divisor of anticanonical degree $d-1$. By the inductive hypothesis, $m' = x_{E_1}^{n_1-1} x_{E_2}^{n_2} \cdots x_{E_k}^{n_k} n$, where $n \in L_N$. Thus $m = x_{E_1}^{n_1} x_{E_2}^{n_2} \cdots x_{E_k}^{n_k} n$ and the lemma follows. \(\square\)

Corollary 1. The ideal P is generated by the homogeneous elements of nef $Pic(X_r)$–degree.

Proof. This is clear, thanks to the previous lemma and the fact that the ideal P is generated by homogeneous elements. \(\square\)