21. Explain why the following curious calculations hold:

\[
\begin{align*}
1 \cdot 9 + 2 &= 11 \\
12 \cdot 9 + 3 &= 111 \\
123 \cdot 9 + 4 &= 1111 \\
1234 \cdot 9 + 5 &= 11111 \\
12345 \cdot 9 + 6 &= 111111 \\
123456 \cdot 9 + 7 &= 1111111 \\
1234567 \cdot 9 + 8 &= 11111111 \\
12345678 \cdot 9 + 9 &= 111111111 \\
123456789 \cdot 9 + 10 &= 1111111111
\end{align*}
\]

[Hint: Show that

\[
(10^{n-1} + 2 \cdot 10^{n-2} + 3 \cdot 10^{n-3} + \cdots + n)(10 - 1)
+ (n + 1) = \frac{10^{n+1} - 1}{9}.
\]

22. An old and somewhat illegible invoice shows that 72 canned hams were purchased for $x 67.9y. Find the missing digits.

23. If 792 divides the integer 13xy 45z, find the digits x, y, and z.

[Hint: By Problem 15, 8|45z.]

24. For any prime $p > 3$ prove that 13 divides $10^{2p} - 10^p + 1$.

[Hint: By Problem 16(a), $10^p \equiv 1 \pmod{13}$.]

4.4 LINEAR CONGRUENCES

This is a convenient place in our development of number theory at which to investigate the theory of linear congruences: An equation of the form \(ax \equiv b \pmod{n} \) is called a linear congruence, and by a solution of such an equation we mean an integer \(x_0 \) for which \(ax_0 \equiv b \pmod{n} \). By definition, \(ax_0 \equiv b \pmod{n} \) if and only if \(n \mid ax_0 - b \) or, what amounts to the same thing, if and only if \(ax_0 - b = ny_0 \) for some integer \(y_0 \). Thus, the problem of finding all integers that will satisfy the linear congruence \(ax \equiv b \pmod{n} \) is identical with that of obtaining all solutions of the linear Diophantine equation \(ax - ny = b \). This allows us to bring the results of Chapter 2 into play.

It is convenient to treat two solutions of \(ax \equiv b \pmod{n} \) that are congruent modulo \(n \) as being "equal" even though they are not equal in the usual sense. For instance, \(x = 3 \) and \(x = -9 \) both satisfy the congruence \(3x \equiv 9 \pmod{12} \); because \(3 \equiv -9 \pmod{12} \), they are not counted as different solutions. In short: When we refer to the number of solutions of \(ax \equiv b \pmod{n} \), we mean the number of incongruent integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

Theorem 4.7. The linear congruence \(ax \equiv b \pmod{n} \) has a solution if and only if \(d \mid b \), where \(d = \gcd(a, n) \). If \(d \mid b \), then it has \(d \) mutually incongruent solutions modulo \(n \).
Proof. We already have observed that the given congruence is equivalent to the linear Diophantine equation \(ax - ny = b \). From Theorem 2.9, it is known that the latter equation can be solved if and only if \(d \mid b \); moreover, if it is solvable and \(x_0, y_0 \) is one specific solution, then any other solution has the form

\[
x = x_0 + \frac{n}{d} t \quad y = y_0 + \frac{a}{d} t
\]

for some choice of \(t \).

Among the various integers satisfying the first of these formulas, consider those that occur when \(t \) takes on the successive values \(t = 0, 1, 2, \ldots, d - 1 \):

\[
x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \ldots, x_0 + \frac{(d-1)n}{d}
\]

We claim that these integers are incongruent modulo \(n \), and all other such integers \(x \) are congruent to some one of them. If it happened that

\[
x_0 + \frac{n}{d} t_1 \equiv x_0 + \frac{n}{d} t_2 \pmod{n}
\]

where \(0 \leq t_1 < t_2 \leq d - 1 \), then we would have

\[
\frac{n}{d} t_1 \equiv \frac{n}{d} t_2 \pmod{n}
\]

Now \(\gcd(n/d, n) = n/d \), and therefore by Theorem 4.3 the factor \(n/d \) could be canceled to arrive at the congruence

\[
t_1 \equiv t_2 \pmod{d}
\]

which is to say that \(d \mid t_2 - t_1 \). But this is impossible in view of the inequality \(0 < t_2 - t_1 < d \).

It remains to argue that any other solution \(x_0 + (n/d)t \) is congruent modulo \(n \) to one of the \(d \) integers listed above. The Division Algorithm permits us to write \(t = qd + r \), where \(0 \leq r \leq d - 1 \). Hence

\[
x_0 + \frac{n}{d} t = x_0 + \frac{n}{d} (qd + r)
\]

\[
= x_0 + nq + \frac{n}{d} r
\]

\[
\equiv x_0 + \frac{n}{d} r \pmod{n}
\]

with \(x_0 + (n/d)r \) being one of our \(d \) selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating explicitly: If \(x_0 \) is any solution of \(ax \equiv b \pmod{n} \), then the \(d = \gcd(a, n) \) incongruent solutions are given by

\[
x_0, x_0 + \frac{n}{d}, x_0 + 2\left(\frac{n}{d}\right), \ldots, x_0 + (d-1)\left(\frac{n}{d}\right)
\]

For the reader’s convenience, let us also record the form Theorem 4.7 takes in the special case in which \(a \) and \(n \) are assumed to be relatively prime.

Corollary. If \(\gcd(a, n) = 1 \), then the linear congruence \(ax \equiv b \pmod{n} \) has a unique solution modulo \(n \).
We now pause to look at two concrete examples.

Example 4.6. First consider the linear congruence $18x \equiv 30 \pmod{42}$. Because $\gcd(18, 42) = 6$ and 6 surely divides 30, Theorem 4.7 guarantees the existence of exactly six solutions, which are incongruent modulo 42. By inspection, one solution is found to be $x = 4$. Our analysis tells us that the six solutions are as follows:

$$x \equiv 4 + (42/6)t \equiv 4 + 7t \pmod{42} \quad t = 0, 1, \ldots, 5$$

or, plainly enumerated,

$$x \equiv 4, 11, 18, 25, 32, 39 \pmod{42}$$

Example 4.7. Let us solve the linear congruence $9x \equiv 21 \pmod{30}$. At the outset, because $\gcd(9, 30) = 3$ and $3 \mid 21$, we know that there must be three incongruent solutions.

One way to find these solutions is to divide the given congruence through by 3, thereby replacing it by the equivalent congruence $3x \equiv 7 \pmod{10}$. The relative primeness of 3 and 10 implies that the latter congruence admits a unique solution modulo 10. Although it is not the most efficient method, we could test the integers 0, 1, 2, \ldots, 9 in turn until the solution is obtained. A better way is this: Multiply both sides of the congruence $3x \equiv 7 \pmod{10}$ by 7 to get

$$21x \equiv 49 \pmod{10}$$

which reduces to $x \equiv 9 \pmod{10}$. (This simplification is no accident, for the multiples $0 \cdot 3, 1 \cdot 3, 2 \cdot 3, \ldots, 9 \cdot 3$ form a complete set of residues modulo 10; hence, one of them is necessarily congruent to 1 modulo 10.) But the original congruence was given modulo 30, so that its incongruent solutions are sought among the integers 0, 1, 2, \ldots, 29. Taking $t = 0, 1, 2$, in the formula

$$x = 9 + 10t$$

we obtain 9, 19, 29, whence

$$x \equiv 9 \pmod{30} \quad x \equiv 19 \pmod{30} \quad x \equiv 29 \pmod{30}$$

are the required three solutions of $9x \equiv 21 \pmod{30}$.

A different approach to the problem is to use the method that is suggested in the proof of Theorem 4.7. Because the congruence $9x \equiv 21 \pmod{30}$ is equivalent to the linear Diophantine equation

$$9x - 30y = 21$$

we begin by expressing 3 = $\gcd(9, 30)$ as a linear combination of 9 and 30. It is found, either by inspection or by using the Euclidean Algorithm, that $3 = 9(-3) + 30 \cdot 1$, so that

$$21 = 7 \cdot 3 = 9(-21) - 30(-7)$$

Thus, $x = -21$, $y = -7$ satisfy the Diophantine equation and, in consequence, all solutions of the congruence in question are to be found from the formula

$$x = -21 + (30/3)t = -21 + 10t$$
The integers \(x = -21 + 10r \), where \(r = 0, 1, 2 \), are incongruent modulo 30 (but all are congruent modulo 10); thus, we end up with the incongruent solutions
\[
 x \equiv -21 \pmod{30} \quad x \equiv -11 \pmod{30} \quad x \equiv -1 \pmod{30}
\]
or, if one prefers positive numbers, \(x \equiv 9, 19, 29 \pmod{30} \).

Having considered a single linear congruence, it is natural to turn to the problem of solving a system of simultaneous linear congruences:
\[
a_1x \equiv b_1 \pmod{m_1}, \; a_2x \equiv b_2 \pmod{m_2}, \ldots, \; a_rx \equiv b_r \pmod{m_r}
\]
We shall assume that the moduli \(m_k \) are relatively prime in pairs. Evidently, the system will admit no solution unless each individual congruence is solvable; that is, unless \(d_k \mid b_k \) for each \(k \), where \(d_k = \gcd(a_k, m_k) \). When these conditions are satisfied, the factor \(d_k \) can be canceled in the \(k \)th congruence to produce a new system having the same set of solutions as the original one:
\[
a_1'x \equiv b_1' \pmod{n_1}, \; a_2'x \equiv b_2' \pmod{n_2}, \ldots, \; a_r'x \equiv b_r' \pmod{n_r}
\]
where \(n_k = m_k/d_k \) and \(\gcd(n_i, n_j) = 1 \) for \(i \neq j \); in addition, \(\gcd(a_i', n_i) = 1 \). The solutions of the individual congruences assume the form
\[
x \equiv c_1 \pmod{n_1}, \; x \equiv c_2 \pmod{n_2}, \ldots, \; x \equiv c_r \pmod{n_r}
\]
Thus, the problem is reduced to one of finding a simultaneous solution of a system of congruences of this simpler type.

The kind of problem that can be solved by simultaneous congruences has a long history, appearing in the Chinese literature as early as the 1st century A.D. Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by 3, 5, 7, respectively. (Such mathematical puzzles are by no means confined to a single cultural sphere; indeed, the same problem occurs in the \textit{Introductio Arithmeticae} of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early contributions, the rule for obtaining a solution usually goes by the name of the Chinese Remainder Theorem.

Theorem 4.8 Chinese Remainder Theorem. Let \(n_1, n_2, \ldots, n_r \) be positive integers such that \(\gcd(n_i, n_j) = 1 \) for \(i \neq j \). Then the system of linear congruences
\[
x \equiv a_1 \pmod{n_1}
\]
\[
x \equiv a_2 \pmod{n_2}
\]
\[
\vdots
\]
\[
x \equiv a_r \pmod{n_r}
\]
has a simultaneous solution, which is unique modulo the integer \(n_1n_2\cdots n_r \).

Proof. We start by forming the product \(n = n_1n_2\cdots n_r \). For each \(k = 1, 2, \ldots, r \), let
\[
N_k = \frac{n}{n_k} = n_1\cdots n_{k-1}n_{k+1}\cdots n_r
\]
In words, \(N_k \) is the product of all the integers \(n_i \) with the factor \(n_k \) omitted. By hypothesis, the \(n_i \) are relatively prime in pairs, so that \(\gcd(N_k, n_i) = 1 \). According to the theory of a single linear congruence, it is therefore possible to solve the congruence \(N_kx \equiv 1 \pmod{n_k} \); call the unique solution \(x_k \). Our aim is to prove that the integer

\[
\tilde{x} = a_1N_1x_1 + a_2N_2x_2 + \cdots + a_rN_rx_r
\]

is a simultaneous solution of the given system.

First, observe that \(N_i \equiv 0 \pmod{n_k} \) for \(i \neq k \), because \(n_k \mid N_i \) in this case. The result is

\[
\tilde{x} = a_1N_1x_1 + \cdots + a_rN_rx_r \equiv a_kN_kx_k \pmod{n_k}
\]

But the integer \(x_k \) was chosen to satisfy the congruence \(N_kx \equiv 1 \pmod{n_k} \), which forces

\[
\tilde{x} \equiv a_k \cdot 1 \equiv a_k \pmod{n_k}
\]

This shows that a solution to the given system of congruences exists.

As for the uniqueness assertion, suppose that \(x' \) is any other integer that satisfies these congruences. Then

\[
\tilde{x} \equiv a_k \equiv x' \pmod{n_k} \quad k = 1, 2, \ldots, r
\]

and so \(n_k \mid \tilde{x} - x' \) for each value of \(k \). Because \(\gcd(n_1, n_j) = 1 \), Corollary 2 to Theorem 2.4 supplies us with the crucial point that \(n_1n_2 \cdots n_r \mid \tilde{x} - x' \); hence \(\tilde{x} \equiv x' \pmod{n} \). With this, the Chinese Remainder Theorem is proven.

Example 4.8. The problem posed by Sun-Tsu corresponds to the system of three congruences

\[
\begin{align*}
x &\equiv 2 \pmod{3} \\
x &\equiv 3 \pmod{5} \\
x &\equiv 2 \pmod{7}
\end{align*}
\]

In the notation of Theorem 4.8, we have \(n = 3 \cdot 5 \cdot 7 = 105 \) and

\[
N_1 = \frac{n}{3} = 35 \quad N_2 = \frac{n}{5} = 21 \quad N_3 = \frac{n}{7} = 15
\]

Now the linear congruences

\[
35x \equiv 1 \pmod{3} \quad 21x \equiv 1 \pmod{5} \quad 15x \equiv 1 \pmod{7}
\]

are satisfied by \(x_1 = 2, x_2 = 1, x_3 = 1 \), respectively. Thus, a solution of the system is given by

\[
x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233
\]

Modulo 105, we get the unique solution \(x = 233 \equiv 23 \pmod{105} \).

Example 4.9. For a second illustration, let us solve the linear congruence

\[
17x \equiv 9 \pmod{276}
\]
Because $276 = 3 \cdot 4 \cdot 23$, this is equivalent to finding a solution for the system of congruences

\begin{align*}
17x &\equiv 9 \pmod{3} \quad \text{or} \quad x \equiv 0 \pmod{3} \\
17x &\equiv 9 \pmod{4} \quad x \equiv 1 \pmod{4} \\
17x &\equiv 9 \pmod{23} \quad 17x \equiv 9 \pmod{23}
\end{align*}

Note that if $x \equiv 0 \pmod{3}$, then $x = 3k$ for any integer k. We substitute into the second congruence of the system and obtain

$$3k \equiv 1 \pmod{4}$$

Multiplication of both sides of this congruence by 3 gives us

$$k \equiv 9k \equiv 3 \pmod{4}$$

so that $k = 3 + 4j$, where j is an integer. Then

$$x = 3(3 + 4j) = 9 + 12j$$

For x to satisfy the last congruence, we must have

$$17(9 + 12j) \equiv 9 \pmod{23}$$

or $204j \equiv -144 \pmod{23}$, which reduces to $3j \equiv 6 \pmod{23}$; in consequence, $j \equiv 2 \pmod{23}$. This yields $j = 2 + 23t$, with t an integer, whence

$$x = 9 + 12(2 + 23t) = 33 + 276t$$

All in all, $x \equiv 33 \pmod{276}$ provides a solution to the system of congruences and, in turn, a solution to $17x \equiv 9 \pmod{276}$.

We should say a few words about linear congruences in two variables; that is, congruences of the form

$$ax + by \equiv c \pmod{n}$$

In analogy with Theorem 4.7, such a congruence has a solution if and only if $\gcd(a, b, n)$ divides c. The condition for solvability holds if either $\gcd(a, n) = 1$ or $\gcd(b, n) = 1$. Say $\gcd(a, n) = 1$. When the congruence is expressed as

$$ax \equiv c - by \pmod{n}$$

the corollary to Theorem 4.7 guarantees a unique solution x for each of the n incongruent values of y. Take as a simple illustration $7x + 4y \equiv 5 \pmod{12}$, that would be treated as $7x \equiv 5 - 4y \pmod{12}$. Substitution of $y \equiv 5 \pmod{12}$ gives $7x \equiv -15 \pmod{12}$; but this is equivalent to $-5x \equiv -15 \pmod{12}$ so that $x \equiv 3 \pmod{12}$. It follows that $x \equiv 3 \pmod{12}, y \equiv 5 \pmod{12}$ is one of the 12 incongruent solutions of $7x + 4y \equiv 5 \pmod{12}$. Another solution having the same value of x is $x \equiv 3 \pmod{12}, y \equiv 8 \pmod{12}$.

The focus of our concern here is how to solve a system of two linear congruences in two variables with the same modulus. The proof of the coming theorem adopts the familiar procedure of eliminating one of the unknowns.