Math 762 Homework Assignment, Due Thursday, March 8

1. With this exercise you will prove that any distance-preserving transformation of \(\mathbb{E}^d \) is given by an orthogonal transformation followed by a translation. We call such a transformation a \textit{congruence} of \(\mathbb{E}^d \). Let \(f : \mathbb{E}^d \to \mathbb{E}^d \) be any function such that for all \(p_1, p_2 \) in \(\mathbb{E}^d \), \(|f(p_1) - f(p_2)|^2 = |p_1 - p_2|^2 \).

 a. Assume \(f(0) = 0 \). Show that for any \(p_1, p_2 \) in \(\mathbb{E}^d \), \(f(p_1) \cdot f(p_2) = p_1 \cdot p_2 \). (Hint: Use the vector ‘polarization’ identity \(p_1 \cdot p_2 = (p_1^2 + p_2^2 - |p_1 - p_2|^2)/2 \).

 b. Assume \(f(0) = 0 \). Use part a.) to show that \(f \) is linear. Show that for any \(p_1, p_2 \) in \(\mathbb{E}^d \), \(|f(\alpha p_1 + p_2) - \alpha f(p_1) - f(p_2)|^2 = 0 \), where \(\alpha \) is an arbitrary scalar.

 c. Use part a.) and part b.) to show that \(f(p) = Ap + b \), where \(A \) is a \(d \)-by-\(d \) orthogonal matrix, and \(b \) is a vector in \(\mathbb{E}^d \).

2. Let \(p = (p_1, \ldots, p_n) \) and \(q = (q_1, \ldots, q_n) \) be two configurations of points in \(\mathbb{E}^d \), such that for all \(1 \leq i < j \leq n \), \(|p_i - p_j| = |q_i - q_j| \). Show that there is a congruence \(f : \mathbb{E}^d \to \mathbb{E}^d \) such that for \(1 \leq i \leq n \), \(f(p_i) = q_i \). Furthermore, if the affine span of \(p \) is \(d \)-dimensional, the congruence \(f \) is unique.

3. Suppose that \(p_1, p_2, p_3, p_4, p_5 \) are five points in Euclidean 3-space such that \(|p_i - p_{i+1}| \) is constant for \(i = 1, \ldots, 5 \) (indices \(\equiv \) mod 5), and the angles from \(p_{i-1} \) to \(p_i \) to \(p_{i+1} \) are equal to \(\theta \), constant for all \(i \). Let \(f : p \to p \) be the function defined by \(f(p_i) = p_{i+1} \), indices \(\equiv \) mod 5.

 a. Use problem 2 to show that \(f \) extends to a congruence of \(\mathbb{E}^3 \), and that this extension can be taken to be of order 5. In other words \(f \) composed with itself 5 times is the identity.

 b. Show that the congruence \(f \) of part a.) fixes the centroid \((p_1+p_2+p_3+p_4+p_5)/5 \).

 c. Assume that the centroid of \(p \) of part b.) above is the origin, so the congruence of part a.) is a linear transformation given by an orthogonal matrix \(A \). Since \(A^5 = I \) by part a.), conclude that the determinant of \(A \) is 1. Thus \(A \) is a rotation about some line through the origin.

 d. Conclude that the affine span of \(p \) must be 2-dimensional.