Chapter 4

Higher Genus Surfaces

4.1 The Main Result

We will outline two proofs of the main theorem:

Theorem 4.1.1. Let Σ be a closed oriented surface of genus $g > 1$. Then every homotopy class of homeomorphisms has a representative $\zeta : \Sigma \to \Sigma$ satisfying one of the following conditions:

elliptic case: The homeomorphism has finite order, i.e., $\zeta^k = \text{id}_\Sigma$.

hyperbolic case: The homeomorphism leaves a pair of geodesic laminations on Σ invariant.

parabolic case: There is a non-empty collection of simple closed curves on Σ that is left invariant as a subset of Σ. In this case, a power of ζ fixes the curves point-wise.

Definition 4.1.2. For a closed oriented surface of genus $g > 1$, the Teichmüller space is defined as

$$T_\Sigma = \left\{ \text{hyperbolic structures on } \Sigma \right\} / \text{Homeo}_1(\Sigma).$$

The main problem to overcome in both proofs is that the action of $M(\Sigma)$ on T_Σ is not cocompact. There are two main strategies to overcome this obstacle:
• Restrict your attention to a cocompact subspace of T_{Σ}.

• Compactify T_{Σ} so that the action of $M(\Sigma)$ extends to the compactification.

4.1.1 First Proof: Cutting off Infinity

Proposition 4.1.3 There is a metric on Teichmüller space T_{Σ} such that:

1. T_{Σ} is a geodesic metric space.

2. Geodesics are unique.

3. Local geodesics are global.

4. The action of $M(\Sigma)$ on T_{Σ} is by isometries.

Thus, T_{Σ} is a proper metric space and uniquely geodesic.

Definition 4.1.4. Let X be a metric space and $\lambda: X \to X$ be an isometry. The displacement function of λ is

\[D_{\lambda}: X \to \mathbb{R}, \quad x \mapsto d_X(x, \lambda(x)). \]

The displacement of λ is

\[D(\lambda) := \inf_{x \in X} D_{\lambda}(x). \]

The displacement is realized if there is a point $x \in X$ such that

\[D(\lambda) = D_{\lambda}(x). \]

Fix a homeomorphism

\[\zeta: \Sigma \to \Sigma, \]

which induces an isometry λ_{ζ} on Teichmüller space by

\[\lambda_{\zeta}: [\mathcal{H}] \to [\mathcal{H}\zeta]. \]

There are three cases:
• The displacement is realized and equals 0.
• The displacement is realized and strictly positive.
• The displacement is not realized.

The Displacement is Realized and Equals 0
Let \mathcal{H} be a hyperbolic structure on Σ such that $[\mathcal{H}] \in \mathcal{T}_{\Sigma}$ realizes the displacement 0. Note that this point is a fixed point of ζ:

$$[\mathcal{H}] = [\mathcal{H}\zeta].$$

Thus there is a homeomorphism $\xi : \Sigma \to \Sigma$ homotopic to the identity such that

$$\mathcal{H}\xi = \mathcal{H}\zeta.$$

Therefore, $\zeta \circ \xi^{-1}$ is an isometry of (Σ, \mathcal{H}). Since ξ is homotopic to the identity, we conclude that ζ is homotopic to an isometry of (Σ, \mathcal{H}). This isometry has finite order:

Proposition 4.1.5 Any isometry of an oriented closed hyperbolic surface has finite order.

The Displacement is realized and Strictly Positive

Our first goal is to construct a geodesic that is fixed by λ_ζ:

Lemma 4.1.6. Let X be a geodesic metric space and $\lambda : X \to X$ be an isometry whose displacement is strictly positive and realized at a point $x \in X$. Then

$$l := \bigcup_{k \in \mathbb{Z}} [X, \lambda^k(x)] \lambda^{k+1}(x) = \bigcup_{k \in \mathbb{Z}} \lambda^k [X, x] \lambda(x)$$

is locally a geodesic.

Proof. We know that l is geodesic at all points in the interior of $[x, \lambda(x)]$. Since λ preserves being locally geodesic, it suffices to show that l is geodesic at $\lambda(x)$.
Consider the midpoint y of $[x, \lambda(x)]$. Observe that

$$D(\lambda) \leq d(y, \lambda(y)) \leq d(y, \lambda(x)) + d(\lambda(x), \lambda(y)) \leq d(x, \lambda(x)) = D(\lambda).$$

Thus l is geodesic at $\lambda(x)$. \hfill q.e.d.

This construction applies to Teichmüller space and yields are global bi-infinite geodesic C by (??.3). Note that this geodesic is invariant with respect to λ_ζ.

This is the hyperbolic case:

Proposition 4.1.7 Every geodesic in Teichmüller space \mathcal{T}_Σ gives rise to a pair of transverse geodesic laminations.

The Displacement is Not Realized

Definition 4.1.8. A metric space is proper if closed balls are compact.

Exercise 4.1.9. Show that a metric space is proper if and only if:

$$\text{compact} \iff \text{closed and bounded}$$

Exercise 4.1.10. Show that a geodesic metric space is proper if it is complete and locally compact.

Definition 4.1.11. A group G acts properly discontinuously on a topological space X if for every compact subset $C \subseteq X$, the set

$$\{g \in G \mid gC \cap C \neq \emptyset\}$$

is finite.

Remark 4.1.12. A properly discontinuous action is a topological analogue of an action with finite stabilizers.

We already know that the mapping class group does not act freely on Teichmüller space.
Promise 4.1.13 Teichmüller space is a complete, locally compact, proper metric space, and the action of the mapping class group acts properly discontinuously on Teichmüller space.

We need a big theorem. For any $\varepsilon > 0$ let T_ε be the subset of T_Σ of those hyperbolic structures for which the length of all closed geodesics in Σ are bounded from below by ε. Note that T_ε is $M(\Sigma)$-invariant.

Promise 4.1.14 (Mumford’s Compactness Theorem) For each $\varepsilon > 0$, there is a compact subset $C_\varepsilon \subset T_\Sigma$ such that

$$T_\varepsilon = C_\varepsilon M(\Sigma).$$

In fact, C_ε can be taken to be a fundamental domain for the action.

Let us choose a sequence of hyperbolic structures (\mathcal{H}_i) such that

$$d([\mathcal{H}_i], [\mathcal{H}_i \zeta]) \to D\lambda_\zeta \quad \text{as } i \to \infty.$$

Lemma 4.1.15. There is no $\varepsilon > 0$ such that $[\mathcal{H}_i] \in T_\varepsilon$ for all i.

Proof. We argue by contradiction. So suppose $[\mathcal{H}_i] \in T_\varepsilon$ for all i. Then we can find a sequence $\xi_i \in M(\Sigma)$ such that

$$[\mathcal{H}_i \xi_i] \in C_\varepsilon.$$

Note that the sequence

$$d([\mathcal{H}_i], [\mathcal{H}_i \zeta]) = d([\mathcal{H}_i \xi_i], [\mathcal{H}_i \zeta \xi_i])$$

is bounded. Thus the points

$$[\mathcal{H}_i \zeta \xi_i] = [\mathcal{H}_i \xi_i \circ \xi_i^{-1} \circ \zeta \circ \xi_i]$$

stays within bounded distance from the compact set C_ε. Thus we can pass to a subsequence such that simultaneously

$$[\mathcal{H}_i \xi_i] \to \mathcal{H}_+.$$
and

$$[\mathcal{H}_i \xi_i \circ \xi_i^{-1} \circ \zeta \circ \xi_i] \to \mathcal{H}_+.$$

Observe that the isometries $\xi_i^{-1} \circ \zeta \circ \xi_i$ take points close to \mathcal{H}_+ to points close to \mathcal{H}_+. Since the mapping class group acts properly discontinuously on Teichmüller space, it follows that there are only finitely many elements in $M(\Sigma)$ that do this. By the box principle, one of these occurs infinitely many times in the sequence $\xi_i^{-1} \circ \zeta \circ \xi_i$. Let this isometry be $\xi^{-1} \circ \zeta \circ \xi$. Since

$$d([\mathcal{H}_i],[\mathcal{H}_+]) = D(\zeta)$$

it follows that the displacement of ζ is realized at

$$[\mathcal{H}_+ \xi^{-1}] .$$

q.e.d.

Definition 4.1.16. The *spectrum* of a hyperbolic structure \mathcal{H} on Σ is the set

$$\Sigma(\mathcal{H}) := \{ \ln(\gamma) \mid \gamma \text{ is a simple closed geodesic in } \Sigma \} .$$

Promise 4.1.17 For any hyperbolic surface, closed geodesics of length less than $3 + \sqrt{2}$ do not intersect.

Promise 4.1.18 Any collection of pairwise non-intersecting non-homotopic loops on a surface of genus g has at most $3g - 3$ elements.

Corollary 4.1.19. For any hyperbolic structure \mathcal{H},

$$\left| \Sigma(\mathcal{H}) \cap \left(-\infty, \ln(3 + \sqrt{2}) \right) \right| \leq 3g - 3 .$$

q.e.d.

Promise 4.1.20 Let γ be a simple closed curve on Σ that is not homotopically trivial. For each hyperbolic structure \mathcal{H}, there is a unique geodesic $\gamma_\mathcal{H}$ homotopic to γ. Moreover, the map

$$\ell_\gamma : [\mathcal{H}] \mapsto \ln(\text{length of } \gamma_\mathcal{H})$$

is well defined and satisfies the inequality

$$|\ell_\gamma([\mathcal{H}_1]) - \ell_\gamma([\mathcal{H}_2])| \leq d_{\mathcal{T}_\Sigma}([\mathcal{H}_1],[\mathcal{H}_2]) .$$
Choose \(L \) greater than all \(D_{\lambda_i}(|\mathcal{H}_i|) \). Since no \(T_\varepsilon \) contains all \([\mathcal{H}_i]\), it follows that there is an index \(i \) for which
\[
\Sigma(\mathcal{H}_i) = M \uplus N
\]
with
- \(M \neq \emptyset \).
- \(\sup M < \ln(3 + \sqrt{2}) \).
- \(\sup M + L < \inf N \).

We claim that the curves from which the lengths in \(M \) arise form an invariant system. Let \(\Delta \) denote the set of homotopy classes of those closed geodesics.

Observe that
\[
\Sigma(\mathcal{H}) = \Sigma(\mathcal{H}_\zeta) = M \uplus N.
\]
Thus, we may ask whether \(\zeta \) respects the decomposition into \(M \) and \(N \).

The answer is “yes” because of (4.1.20): The curves \(\gamma \) in \(\Delta \) are those with logarithmic length relative to \(\mathcal{H}_i \) in \(M \):
\[
\ell_{\gamma} \mathcal{H}_i \in M.
\]
Since
\[
|\ell_{\gamma} \mathcal{H}_i - \ell_{\gamma} \mathcal{H}_i \zeta| \leq d(\mathcal{H}_i, \mathcal{H}_i \zeta) \leq L,
\]
it follows from \(\sup M + L < \inf N \) that
\[
\ell_{\gamma} \mathcal{H}_i \zeta = \ell_{\zeta \circ \gamma} \mathcal{H} \in M.
\]
Thus, \(\zeta \) permutes the homotopy classes in \(\Delta \). A final fact proves the \(\zeta \) is reducible:

Promise 4.1.21 If a homeomorphism \(\zeta \) permutes a finite set \(\Delta \) of non-parallel, pairwise disjoint simple closed curves then these homotopy classes can simultaneously realized by simple closed curves which are permuted by a homeomorphism homotopic to \(\zeta \).

4.1.2 Second Proof: Compactifying Teichmüller Space