Exercise 11.1. Prove: A polygon diagram describes an orientable surface if and only if, for each edge-color \(a \), the two edges of color \(a \) are oriented oppositely in the boundary circle of the polygon diagram.

Exercise 11.2. Show that any non-orientable surface has a one-vertex-diagram whose boundary reads the colors

\[
\bullet \rightarrow a_1 \bullet \rightarrow a_1 \bullet \rightarrow a_2 \bullet \rightarrow a_2 \bullet \rightarrow a_3 \bullet \rightarrow a_3 \bullet \rightarrow \ldots \bullet \rightarrow a_g \rightarrow \bullet \rightarrow a_g \rightarrow
\]

for some \(g \geq 0 \).

Exercise 11.3. Prove: In a closed surface with a fixed hyperbolic structure, every closed curve is freely homotopic to a unique closed geodesic – here, a closed geodesic need not be simple.

Definition. Let \(G \) be a group with a fixed generating system \(\Sigma \). The Cayley graph \(\Gamma_{\Sigma}(G) \) is a directed graph whose vertices are the elements of \(G \). For each vertex \(g \) and each generator \(x \in \Sigma \), there is an edge from \(g \) to \(gx \). We ignore the orientation of these edges and define a metric on the vertex set by declaring all edges to have length 1: The metric

\[
d_{\Sigma} : G \times G \to \mathbb{R}
\]

is then given by shortest paths – note that \(\Gamma(G) \) is connected since \(\Sigma \) generated \(G \).

Exercise 11.4. Let \(G \) and \(H \) be groups generated by the finite generating sets \(\Sigma \) and \(\Xi \), respectively. Let \(\varphi : G \to H \) be a group homomorphism. Show that there is a constant \(C \) such that for all \(g, h \in G \),

\[
d_{\Xi}(\varphi(g), \varphi(h)) \leq Cd_{\Sigma}(g, h).
\]

Definition. Two metric space \(X \) and \(Y \) are called quasi-isometric if there exist two non-negative constants \(K \) and \(C \) and a function

\[
\varphi : X \to Y
\]

such that:

1. For all \(x, y \in X \),

\[
\frac{1}{C}d_X(x, y) - K \leq d_Y(\varphi(x), \varphi(y)) \leq Cd_X(x, y) + K.
\]

2. Every point in \(Y \) is within distance \(K \) of the image of \(\varphi \).

Exercise 11.5. Show that quasi-isometry is an equivalence relation on the class of metric spaces.

Exercise 11.6. Let \(\Sigma \) be a closed oriented surface with negative Euler characteristic. Show that the Cayley graph of \(\pi_1(\Sigma) \) with respect to any finite generating set is quasi-isometric to \(\mathbb{H}^2 \).

Each problem is worth 5 points, but you can earn at most 20 points with this assignment.

Late homework will not be accepted.