Math 661 – Geometric Topology (homework 7, due Oct 25)

Exercise 7.1 (Correction). Let \(\mathcal{P}_x(X) \) denote the set
\[
\mathcal{P}_x(X) := \{ p : \mathbb{I} \to X \mid p \text{ is continuous and } p(0) = x \}
\]
and let \(\sim \) be the equivalence relation of paths being homotopic relative to endpoints. Let the topology on \(\mathcal{P}_x(X)/\sim \) be defined by basic open sets
\[
U_{p,V} := \{ q \mid q \text{ is a path in } V \text{ starting at } p(1) \}
\]
where \(p : \mathbb{I} \to X \) is a path and \(V \) is an open neighborhood of the endpoint \(p_1 \).

Let
\[
p : \mathbb{I} \to \mathcal{P}_x(X)/\sim
\]
be a path starting at the base point of \(\mathcal{P}_x(X)/\sim \) which is class of the constant path \(p_0 : s \mapsto x \). Prove that any representative of the class \(p_1 \) is homotopic relative endpoints to the path
\[
q : \mathbb{I} \to X
\]
\[
t \mapsto p_t(1).
\]

Exercise 7.2. Show that the isometry groups of Euclidean spaces are linear. That is, show that for every \(m \), the group \(\text{Isom}(\mathbb{E}^m) \) is isomorphic to a subgroup of \(\text{GL}_n(\mathbb{R}) \) for some \(n \).

Exercise 7.3. Let \(X \) and \(Y \) be topological spaces. Assume \(X \) is discrete. Then, every function from \(X \) to \(Y \) is continuous. Thus in the realm of sets, we have the identity
\[
C(X,Y) = \text{Map}(X,Y).
\]
However, in the realm of topological spaces, the left hand carries the compact-open topology whereas the right hand comes with the product topology—recall that \(\text{Map}(X,Y) \) is just a product of “\(X \)-many” copies of \(Y \). Show that the identity above holds in the realm of topological spaces, i.e., show that the compact open topology agrees with the product topology.

Exercise 7.4. Consider the action of \(\text{GL}_2(\mathbb{R}) \) on the real projective line \(\mathbb{RP}_1 \). Let \(M \in \text{GL}_2(\mathbb{R}) \) be a matrix with \(\text{tr}(M) > 2 \). Prove that there are precisely two fixed points \(x_- \) and \(x_+ \) in \(\mathbb{RP}_1 \). Moreover show that the dynamics of \(M \) is as follows: For any pair of open neighborhoods \(U_i \) of \(x_i \), there is a power \(n \) such that
\[
M^n(x) \in U_+ \text{ for any point } x \notin U_-.
\]
Thus, \(x_+ \) is attracting and \(x_- \) is repelling.

Each problem is worth 5 points, but you can earn at most 15 points with this assignment.

Late homework will not be accepted.