Before we recall the exact statement of the Inverse Function Theorem, let’s think about what we’d like for it to say. We’ve been talking about solving equations. Naively, given a function \(f : \mathbb{R}^n \to \mathbb{R}^n \) and a value \(b \) in the range, we simply want to solve \(f(x) = b \). Newton’s method gives us a way to do this. But in the linear case, we have a much stronger situation: when \(f \) is invertible, we just have to find \(f^{-1} \) to get solutions to all equations \(f(x) = b \). By examples, we know that it’s generally hopeless to expect this to happen for non-linear functions. But if we know a solution exists for some \(b_0 \), we might hope that solutions also exist near \(b_0 \). The Inverse Function Theorem tells us that this hope is (often) justified, and that the solutions depend differentiably on \(b \) near \(b_0 \).

Theorem 1 (Inverse Function Theorem). Let \(f : U \subset \mathbb{R}^n \to \mathbb{R}^n \) be a \(C^1 \) function on a neighborhood of \(x_0 \). Suppose that \(Df(x_0) \) is invertible. Then \(f \) has a local \(C^1 \) inverse on a neighborhood of \(x_0 \), i.e., \(f(x) = b \) has a solution for \(b \) in some ball around \(f(x_0) \).

The concept of “locally invertible” may be difficult. First, you should realize that a property being “local” on a set simply means that every point in that set is contained in a neighborhood on which the property holds. (As opposed to “pointwise”, which only has to hold at each point: continuity is an example of a pointwise property.) Some examples may help explain why local invertibility is such an important concept.

Example 1 (A function that is everywhere locally invertible, but does not have a global inverse). Define \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \\ x^2 - 1 & \text{if } x < 0. \end{cases}
\]

At every point of \(\mathbb{R} \), \(f \) has a local inverse. For \(x > 0 \), it is \(y \mapsto \sqrt{y} \); for \(x < 0 \), it is \(y \mapsto -\sqrt{y} + 1 \). There is also an inverse on the interval \((-1, 1)\), given by

\[
y \mapsto \begin{cases} -\sqrt{y} + 1 & \text{if } y \in (-1, 0) \\ \sqrt{y} & \text{if } y \in [0, 1). \end{cases}
\]

However, \(f \) has no global inverse, because it is not one-to-one.

Example 2 (A differentiable example). Consider the exponential function \(\exp : \mathbb{C} \to \mathbb{C} \). As you saw in an earlier homework, the derivative of \(\exp \) as a function \(\mathbb{R}^2 \to \mathbb{R}^2 \) at \(z_0 = x_0 + iy_0 \) is

\[
D \exp \left(\begin{array}{c} x_0 \\ y_0 \end{array} \right) = e^{x_0} \begin{bmatrix} \cos y_0 & -\sin y_0 \\ \sin y_0 & \cos y_0 \end{bmatrix}.
\]

This matrix is always invertible—its determinant is \(e^{2x_0} \neq 0 \). Thus the Inverse Function Theorem guarantees a local inverse of \(\exp \) at each point of \(\mathbb{C} \), and the inverse will even be differentiable! (Aside: such a local inverse for \(\exp \) is called, naturally, a logarithm. But as we’ll see in a moment, logarithms are far from unique.)

However, \(\exp \) is not one-to-one on \(\mathbb{C} \): if \(z_1 = x + iy_1 \) and \(z_2 = x + iy_2 \), where \(y_1 \) and \(y_2 \) differ by a multiple of \(2\pi \), then \(e^{z_1} = e^{z_2} \); \(\exp \) is periodic in the imaginary direction. (Wow!) Any point of \(\mathbb{C} \) is contained in a ball of radius \(\pi \) on which \(\exp \) is invertible. (In your spare time, you might think about what the image of this ball would look like.)