EUCLIDEAN ALGORITHM (elementary proof of uniqueness)

Use induction.

Suppose $m = p_1 r_1 \cdots = p'_1 r'_1 \cdots$

where no prime on the left occurs on the right

(otherwise cancel and use induction hypothesis)

May assume:

- p smallest among p, z, z', \ldots.
- z smallest among p', z', \ldots.
- $p < p'$
- more than one term

Then $m > p^2$ and $m \geq p^2 \Rightarrow m^2 > (pp')^2 \Rightarrow m > pp'$
PERFECT NUMBERS

Definition: A number \(m \) is called perfect if \(m = \sigma(m) \) where \(\sigma \) is the sum of divisors.

Example: \(\sigma(6) = 1 + 2 + 3 + 6 = 12 \)

Proof:

Let \(m = \prod p_i^{k_i} \) be the prime decomposition of \(m \), where \(p_i \) are prime numbers. Then

\[
\sigma(m) = \sum_{i=1}^{n} \frac{p_i^{k_i+1} - 1}{p_i - 1}
\]

For a prime \(p \) and \(k \), \(\sigma(p^k) = \frac{p^{k+1} - 1}{p - 1} \)

So if \(m \) is perfect, then

\[
\sum_{i=1}^{n} \frac{p_i^{k_i+1} - 1}{p_i - 1} = m
\]

Then \(m - p\sigma(p) = 0 \) for \(p \mid m \) which implies that \(m = p\sigma(p) \) for each prime \(p \) dividing \(m \). Thus \(m \) is perfect.

Contradiction:

Consider a perfect number \(m \) with \(m > 1 \) and \(m \) not divisible by \(2 \). Assume \(m \) is the smallest such perfect number.

Then \(2^k \) divides \(m \) for some \(k \), and \(\sigma(2^k) = 2^{k+1} - 2 \)

Thus \(\sigma(2^k) > 2^k \) if \(k > 1 \), contradicting the assumption that \(m \) is perfect.
So \(\frac{2a+1}{m} \) is a proper divisor of \(m \). But \(\delta(m) < m \) if \(\frac{2a+1}{m} = 1 \). Therefore, \(m = \frac{2a+1}{1+1} \).

\[h = \frac{2a+1}{1+1} = \frac{2a-1}{2} (2a^2) \]

And \(m = \frac{2a+1}{1+1} = \frac{2a-1}{2} (2a^2) \) is odd. So \(\delta(m) = 2 \) if \(m = 2n \) is even.

Conversely: Say \(m \) is a proper divisor of \(n \). Then, \(\frac{n}{m} = 2. \) Then, \(\delta(n) = (2a+1) \) is a prime divisor of \(n \). Therefore, \(n = 2n = 2^{2a+1} \).
Not known if there are so many.

$p = 2^k - 1$ is called a Mersenne prime.

So $m = 2^k - 1$ is a prime.

Here are the only five divisors of m.