THEOREM (Lagrange):

Let \(H \subseteq G \) be a subgroup of a finite group \(G \). Write \(\text{ord}(H), \text{ord}(G) \) for the sizes of \(H \) and \(G \). Then

\[
\text{ord}(H) \mid \text{ord}(G).
\]

Application: Let \(m \) be a positive integer and \(G = \mathbb{Z}/m\mathbb{Z} \), the congruences which are prime to \(m \). Then \(G \) is a finite group of size \(\varphi(m) \), the Euler totient function.

Let \(a \in G \) be a congruence. Then

\[
H = \{ a, a^2, \ldots, a^d \} = 1 \text{ in a subgroup}
\]

\(d \) is the order of \(a \). The size of \(H \) is \(d \).

Legendre's theorem says \(d \mid \varphi(m) \)

So \(\varphi(m) = k \cdot d \), and

\[
\varphi(m) = k \cdot d \quad a^{k-1} = 1 \quad \text{(Euler's Theorem)}
\]

Special Case (Fermat): \(m = p \) is prime. \(\varphi(m) = p-1 \)

\[
(a, p) = 1 \quad a^{p-1} = 1
\]
Proof of Legendre's Theorem:

\(H = \{ h_1, \ldots, h_d \} \). For \(g \in G \) write

\[C(g) = \{ gh_1, \ldots, gh_d \} \]

(1) \(C(g) \) has \(d \) elements.

If \(ghi = ghj \) multiply by \(g^{-1} \Rightarrow hi = hj \)

(2) \(g_1, g_2 \in G \) then either \(C(g_1) = C(g_2) \)

or \(C(g_1) \cap C(g_2) = \emptyset \)

If \(C(g_1) \cap C(g_2) \neq \emptyset \) then \(g_1hi = g_2hj \) so

\[g_2g_1 = hj \cdot h_i^{-1} = h \in H. \ So \ g_1 = g_2h \]

Then \(C(g_1) = \{ g_2hh_1, \ldots, g_2hh_d \} \)

\[C(g_2) = \{ g_2h_1, \ldots, g_2h_d \} \]

are the same set except for order.

(3) (1) & (2) imply that \(G \) is a disjoint union of sets of size \(d \), say \(k \) of them.

Thus \(k \cdot d = \text{order}(G) \Rightarrow d = \frac{\text{order}(H)}{\text{order}(G)} \)