Levi’s Theorem

Let \(\mathfrak{g} \) be an arbitrary Lie algebra and \(\mathfrak{a} \) an ideal such that the quotient \(\mathfrak{s} \) is semisimple. Then \(\mathfrak{a} \) has a complement which is a Lie algebra.

We can rephrase this as follows. Suppose

\[
0 \longrightarrow \mathfrak{a} \longrightarrow \mathfrak{g} \xrightarrow{\pi} \mathfrak{s} \longrightarrow 0
\]

is an exact sequence of Lie algebras such that \(\mathfrak{s} \) is semisimple. Then there is a Lie algebra homomorphism \(\epsilon : \mathfrak{s} \longrightarrow \mathfrak{g} \) such that \(\pi \circ \epsilon = Id \).
Proof of Levi’s theorem

Proof.

Suppose \(\mathfrak{a} \) has a nontrivial proper ideal \(\mathfrak{a}_1 \). Then there is an exact sequence

\[
0 \rightarrow \mathfrak{a}/\mathfrak{a}_1 \rightarrow \mathfrak{g}/\mathfrak{a}_1 \xrightarrow{\pi} \mathfrak{s} \rightarrow 0
\]

(2)

By induction on the dimension of \(\mathfrak{a} \), we can assume that \(\mathfrak{a}/\mathfrak{a}_1 \) has a complement \(\mathfrak{s}_1 \). Then there is an exact sequence

\[
0 \rightarrow \mathfrak{a}_1 \rightarrow \mathfrak{g}_1 \xrightarrow{\pi} \mathfrak{s} \rightarrow 0
\]

(3)

where \(\mathfrak{g}_1 \) is the inverse image of \(\mathfrak{s}_1 \). By induction on the dimension of \(\mathfrak{g} \), there is a Lie algebra complement \(\mathcal{V} \) to \(\mathfrak{a}_1 \) in \(\mathfrak{g}_1 \). Then a dimension count shows that this is a complement to \(\mathfrak{a} \) in \(\mathfrak{g} \) as well.
Thus we may assume that \mathfrak{a} has no proper ideals. Let \mathfrak{r} be the solvable radical of \mathfrak{g}. Then its image under π is a solvable ideal in \mathfrak{s}, therefore 0. In other words $\mathfrak{r} \subseteq \mathfrak{a}$. If $\mathfrak{r} = (0)$, the whole algebra \mathfrak{g} is semisimple and we’re done. If $\mathfrak{r} = \mathfrak{a}$, then \mathfrak{a} is solvable, so $[\mathfrak{a}, \mathfrak{a}]$ is a proper ideal, therefore zero. Thus \mathfrak{a} is abelian. Then the adjoint action of \mathfrak{g} factors through \mathfrak{a}, so \mathfrak{a} is a module for \mathfrak{s}. The fact that \mathfrak{a} has no proper ideals means that this module is simple. If this module were trivial, then \mathfrak{a} would be contained in the center of \mathfrak{g}. Then $\mathfrak{g}/\mathfrak{a} = \mathfrak{s}$ acts on all of \mathfrak{g} via the adjoint action. Since \mathfrak{s} is semisimple, the representation is completely reducible and the claim again follows.
Proof of Levi’s theorem

continued.

Thus we may assume we are in the case when \mathfrak{a} is abelian and an irreducible nontrivial module for \mathfrak{s}. We can write $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{s}$ as a vector space. The bracket must take the form

$$
[(a_1, x_1), (a_2, x_2)] =
= ([a_1, a_2] + \tau(x_1)a_2 - \tau(x_2)a_1 + \phi(x_1, x_2), [x_1, x_2]) = (4)
= (\tau(x_1)a_2 - \tau(x_2)a_1 + \phi(x_1, x_2), [x_1, x_2]).
$$

The term $[a_1, a_2]$ drops out because we assumed \mathfrak{a} abelian. $\tau : \mathfrak{s} \rightarrow \text{End}(\mathfrak{a})$ is given by $\tau(x)a := [(a, 0), (0, x)]$, which must be in \mathfrak{a}, and $\phi : \Lambda^2\mathfrak{s} \rightarrow \mathfrak{a}$ is the component of $[(0, x_1), (0, x_2)]$ in \mathfrak{a}. The Jacobi identity implies that ϕ is a cocycle.
Two such realizations are equivalent if there is an isomorphism
\[\Psi : \mathfrak{a} \oplus \mathfrak{s} \longrightarrow \mathfrak{a} \oplus \mathfrak{s} \]
of the form \[\Psi(a, x) = (a + \sigma(x), x) \]
satisfying \[\Psi([[a_1, x_1], (a_2, x_2)])_1 = [\Psi(a_1, x_1), \Psi(a_2, x_2)]_2. \]
This is equivalent to \[\phi_1(x_1, x_2) - \phi_2(x_1, x_2) = \sigma([x_1, x_2]), \]
i.e. \[\phi_1 - \phi_2 \] is a coboundary. But because \(\mathfrak{s} \) is semisimple,
\[H^2(\mathfrak{s}, \mathfrak{a}) = H^2(\mathfrak{s}) \otimes \mathfrak{a}^s = \Lambda^2(\mathfrak{s})^s \oplus \mathfrak{a}^s = 0 \quad (5) \]
since \(\mathfrak{a} \) was assumed nontrivial.

In fact \(\Lambda^2(\mathfrak{g})^\mathfrak{g} = 0 \) for any semisimple Lie algebra \(\mathfrak{g} \). \(\square \)
Suppose $\pi : \mathfrak{s} \longrightarrow \text{Der}(\mathfrak{a})$ is a representation, where \mathfrak{s} and \mathfrak{a} are Lie algebras. Then we can form a new Lie algebra $\mathfrak{g} := \mathfrak{s} \ltimes \mathfrak{a}$ as follows. The space of \mathfrak{g} is $\mathfrak{s} \times \mathfrak{a}$. The bracket is

$$[[x_1, a_1], (x_2, a_2)] = ([x_1, x_2], [a_1, a_2] + \pi(x_1)(a_2) - \pi(x_2)(a_1)).$$

(6)

This algebra is called the semidirect product of \mathfrak{s} and \mathfrak{a}, and \mathfrak{a} is an ideal in \mathfrak{g}.

Corollary (Levi’s theorem)

Every Lie algebra is the semidirect product of its solvable radical with a semisimple algebra.

The semisimple algebra is called the *Levi component* of \mathfrak{g}. The corollary is a special case of the theorem, $\mathfrak{a} = \mathfrak{r}(\mathfrak{g})$.
The radical is unique, but the Levi component is not. It is unique up to conjugation by inner automorphisms (elements of the connected Lie group in $Aut(\mathfrak{g})$ whose Lie algebra is the algebra of derivations of \mathfrak{g}.) The proof is very similar to the analogous statement about the conjugacy of all Cartan subalgebras. It is called the Malcev-Harish-Chandra theorem.

Suppose S and A are groups, and $\Pi : S \to Aut(A)$ is a group homomorphism. We can form the semidirect product $A \ltimes S$ as follows. The space is $S \times A$, and the product is

$$(s_1, a_1) \cdot (s_2, a_2) = (s_1 s_2, \Pi(s_2^{-1})a_1 a_2). \quad (7)$$

Then $\pi := d\Pi : S \to Der(\mathfrak{a})$ defines a semidirect product $s \ltimes \mathfrak{a}$, which is the Lie algebra of $S \ltimes A$.
Proposition

For every Lie algebra \mathfrak{g} there is a Lie group G such that $\text{Lie}(G) = \mathfrak{g}$.

Proof.

Levi’s theorem reduces the proof of the proposition to the case when \mathfrak{g} is solvable. Then there is a sequence of ideals

$$\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_n \supset \mathfrak{g}_{n+1} = (0) \quad (8)$$

such that $\dim(\mathfrak{g}_i/\mathfrak{g}_{i+1}) = 1$. Choose $\nu \in \mathfrak{g}/\mathfrak{g}_1$. Then $\mathfrak{h}_0 := \mathbb{K}\nu$ is a subalgebra, and we can write $\mathfrak{g} = \mathfrak{g}_1 \ltimes \mathfrak{h}_0$ with τ given by the action of $\text{ad} \nu$ on \mathfrak{g}_1.

The proof follows by induction, and using the construction of semidirect products of groups and Lie algebras.
This proposition is made clearer by the following theorem.

Theorem (Ado)

Every Lie algebra has a representation $\pi : g \rightarrow \text{End}(V)$ *which is faithful, i.e.* $\ker \pi = (0)$.