TYPES OF INTEGRALS

Each of these gives a number. The function \(f \) is typically some kind of density.

Double Integral: \(\int \int_{D} f(x, y) \, dx \, dy \).

Associated Riemann Sum: \(\Sigma f(x, y) \Delta x \Delta y \).

Calculation Method: Fubini’s Thm. e.g. \(\int_{x=0}^{1} \int_{y=x^3}^{x} xy \, dy \, dx \).

Changing to polar coordinates often helpful.

Triple Integral: \(\int \int \int_{\Omega} f(x, y, z) \, dx \, dy \, dz \).

Associated Riemann Sum: \(\Sigma f(x, y, z) \Delta x \Delta y \Delta z \).

Calculation Method: Fubini’s Thm. e.g. \(\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{z=x^2+y^2}^{8-x^2-y^2} 1 \, dz \, dy \, dx \).

Changing to spherical/cylindrical coordinates often helpful.

Surface Integral of a Function: \(\int \int_{S} f(x, y, z) \, d\sigma \).

Associated Riemann Sum: \(\Sigma f(x, y, z) \Delta \sigma \).

Calculation Method:

1. \(\vec{r}(u, v) = < x(u, v), y(u, v), z(u, v) > \)
2. \(\vec{r}_u = < x_u, y_u, z_u >, \vec{r}_v = \ldots \)
3. \(d\sigma = \| \vec{r}_u \times \vec{r}_v \| \, du \, dv \)
4. *Reduce to a double integral.*

Surface Integral of a Vector Field: \(\int \int_{S} \vec{E}(x, y, z) \cdot \hat{n} \, d\sigma \).

Exactly the same as \(\int \int_{S} \vec{E}(x, y, z) \cdot \hat{n} \, dS \).

Associated Riemann Sum: \(\Sigma (\vec{E}(x, y, z) \cdot \hat{n}) \Delta \sigma \).

Calculation Method:

1. \(\vec{r}(u, v) = < x(u, v), y(u, v), z(u, v) > \)
2. \(\vec{r}_u = < x_u, y_u, z_u >, \vec{r}_v = \ldots \)
3. \(\hat{n} = \pm \frac{\vec{r}_u \times \vec{r}_v}{\| \vec{r}_u \times \vec{r}_v \|} \)
4. \(d\sigma = \| \vec{r}_u \times \vec{r}_v \| \, du \, dv \)
5. *Reduce to a double integral.*

In physics, one often has occasion to extend the first three integrals above to vector-valued integrals; e.g. \(\int \int_{D} \vec{F}(x, y) \, dx \, dy \), etc. For example, \(\vec{F} \) might be a vector field describing the force density and the integral would be the total force. Mathematically, this kind of integral is just several ordinary double integrals - one for each component.