Flow Polytopes and Degree Sequences

Avery St. Dizier

Cornell University

Joint work with Karola Mészáros
Outline

What are flow polytopes?
Outline

What are flow polytopes?

An Interesting Example
Outline

What are flow polytopes?
An Interesting Example
Triangulations of Flow Polytopes
Outline

What are flow polytopes?

An Interesting Example

Triangulations of Flow Polytopes

Right-Degree Polynomials
Outline

What are flow polytopes?
An Interesting Example
Triangulations of Flow Polytopes
Right-Degree Polynomials
Further Questions
Flows on a Graph

For this talk, a graph G will mean a set of vertices labeled by \{1, 2, \ldots, n\} and a collection of edges $E(G)$. Multiple edges are allowed, but not loops.
Flows on a Graph

For this talk, a graph \(G \) will mean a set of vertices labeled by \(\{1, 2, \ldots, n\} \) and a collection of edges \(E(G) \). Multiple edges are allowed, but not loops.

Make \(G \) a directed graph with edge orientations induced by the vertex labels, so edges go from smaller to larger vertices.
Flows on a Graph

For this talk, a graph G will mean a set of vertices labeled by $\{1, 2, \ldots, n\}$ and a collection of edges $E(G)$. Multiple edges are allowed, but not loops.

Make G a directed graph with edge orientations induced by the vertex labels, so edges go from smaller to larger vertices.

View each edge as a pipe, each vertex as a valve with an inflow or outflow amount, and imagine water moving across the graph.
Flows on a Graph

For this talk, a graph G will mean a set of vertices labeled by $\{1, 2, \ldots, n\}$ and a collection of edges $E(G)$. Multiple edges are allowed, but not loops.

Make G a directed graph with edge orientations induced by the vertex labels, so edges go from smaller to larger vertices.

View each edge as a pipe, each vertex as a valve with an inflow or outflow amount, and imagine water moving across the graph.

A flow is an assignment $f : E(G) \rightarrow \mathbb{R}_{\geq 0}$ of quantities of fluid to each edge so that fluid is conserved at each vertex.
Flows on a Graph

K_5

2 1 -1 0 -2

1 2 3 4 5
Flow polytopes $\mathcal{F}_G(a)$

(Postnikov-Stanley ’05, Baldoni-Vergne ’08) For a graph G, on the vertex set $\{1, 2, \ldots, n\}$ and netflow vector $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$,
the flow polytope of G is

$$\mathcal{F}_G(a) := \{ f : E(G) \rightarrow \mathbb{R}_{\geq 0} \mid \text{netflow at vertex } j = a_j \}$$
Flow polytopes $\mathcal{F}_G(a)$

(Postnikov-Stanley '05, Baldoni-Vergne '08) For a graph G, on the vertex set $\{1, 2, \ldots, n\}$ and netflow vector $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$, the flow polytope of G is

$$\mathcal{F}_G(a) := \{ f : E(G) \to \mathbb{R}_{\ge 0} \mid \text{netflow at vertex } j = a_j \}$$

The netflow at j is the outflow at j minus the inflow at j:

$$\sum_{(j,k) \in E(G), j<k} f((j,k)) - \sum_{(i,j) \in E(G), i<j} f((i,j))$$
Flow polytopes $\mathcal{F}_G(a)$

(Postnikov-Stanley '05, Baldoni-Vergne '08) For a graph G, on the vertex set $\{1, 2, \ldots, n\}$ and netflow vector $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{Z}^n$, the **flow polytope** of G is

$$\mathcal{F}_G(a) := \{ f : E(G) \to \mathbb{R}_{\geq 0} \mid \text{netflow at vertex } j = a_j \}$$

The netflow at j is the outflow at j minus the inflow at j:

$$\sum_{(j,k) \in E(G), j < k} f((j,k)) - \sum_{(i,j) \in E(G), i < j} f((i,j))$$

We call $f \in \mathcal{F}_G(a)$ a **flow** on G with netflow \mathbf{a}.
Flow polytopes $\mathcal{F}_G(a)$

(Postnikov-Stanley ’05, Baldoni-Vergne ’08) For a graph G, on the vertex set $\{1, 2, \ldots, n\}$ and netflow vector $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$, the **flow polytope** of G is

$$\mathcal{F}_G(a) := \{ f : E(G) \to \mathbb{R}_{\geq 0} \mid \text{netflow at vertex } j = a_j \}$$

The netflow at j is the outflow at j minus the inflow at j:

$$\sum_{(j,k) \in E(G), j<k} f((j,k)) - \sum_{(i,j) \in E(G), i<j} f((i,j))$$

We call $f \in \mathcal{F}_G(a)$ a **flow** on G with netflow a.

In order for a flow to exist, it is necessary that $\sum_{j=1}^{m} a_j \geq 0$ for each $m < n$, and $\sum_{j=1}^{n} a_j = 0$.
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$

$1 = a + b + c + d$
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$

$1 = a + b + c + d$

$0 = e + f + g - a$
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

\[a, b, c, d, e, f, g, h, i, j \geq 0 \]

\[1 = a + b + c + d \]
\[0 = e + f + g - a \]
\[0 = h + i - b - e \]
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$

$1 = a + b + c + d$
$0 = e + f + g - a$
$0 = h + i - b - e$
$0 = j - c - f - h$
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$

\[
\begin{align*}
1 &= a + b + c + d \\
0 &= e + f + g - a \\
0 &= h + i - b - e \\
0 &= j - c - f - h \\
-1 &= -(j + i + g + d)
\end{align*}
\]
The flow polytope $\mathcal{F}_{K_5}(1, 0, 0, 0, -1)$

$a, b, c, d, e, f, g, h, i, j \geq 0$

$1 = a + b + c + d$

$0 = e + f + g - a$

$0 = h + i - b - e$

$0 = j - c - f - h$

$-1 = -(j + i + g + d)$

If M_G is the incidence matrix of a graph G, then another way to view the flow polytope $\mathcal{F}_G(a)$ is

$$\mathcal{F}_G(a) = \left\{ x \in \mathbb{R}_{\geq 0}^{\#E(G)} : M_G x = a \right\}.$$
The number of integer points in a flow polytope $F_G(a)$ is

$$\# \left\{ x \in \mathbb{Z}^{\# E(G)}_{\geq 0} : M_G x = a \right\}.$$

This is the number of ways to write a as a nonnegative integer combination of the vectors $e_i - e_j$ for $(i, j) \in E(G)$.

In representation theory, this function of a is called the Kostant partition function.
What is the flow polytope of ...?
What is the flow polytope of ...?
What is the flow polytope of ...?

\[x = x + y + z \]

\[x, y, z \geq 0 \]
What is the flow polytope of \ldots?

It's \(\Delta^2 \)!
Flow polytopes (in disguise)

The **Chan-Robbins-Yuen polytope**:

\[
\mathcal{CRY}_n := \left\{ (b_{ij}) \in \mathbb{R}^{n \times n}_{\geq 0} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2 \right\}
\]

= convex hull $n \times n$ permutation matrices

\[
\begin{array}{c}
0 \\
\end{array}
\]
Flow polytopes (in disguise)

The Chan-Robbins-Yuen polytope:

\[\mathcal{CRY}_n := \left\{ (b_{ij}) \in \mathbb{R}^{n \times n}_{\geq 0} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2 \right\} \]

= convex hull \(n \times n \) permutation matrices

- \(2^n - 1 \) vertices, dimension \(\binom{n}{2} \)
Flow polytopes (in disguise)

The Chan-Robbins-Yuen polytope:

\[CRY_n := \left\{ (b_{ij}) \in \mathbb{R}^{n \times n}_{\geq 0} \mid \text{doubly-stochastic matrix}, \ b_{ij} = 0, \ i - j \geq 2 \right\} \]

\[= \text{convex hull } n \times n \text{ permutation matrices} \]

- \(2^{n-1}\) vertices, dimension \(\binom{n}{2}\)

- A face of the Birkhoff polytope \(B(n)\)

\[B(n) = \left\{ (b_{ij}) \in \mathbb{R}^{n^2} \mid b_{ij} \geq 0, \ \sum_i b_{ij} = 1, \ \sum_j b_{ij} = 1 \right\} \]

\[= \text{convex hull all } n \times n \text{ permutation matrices} \]
Flow polytopes (in disguise)

The Chan-Robbins-Yuen polytope:

\[\mathcal{CRY}_n := \left\{ (b_{ij}) \in \mathbb{R}^{n \times n} \geq 0 \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2 \right\} \]

= convex hull \(n \times n \) permutation matrices

- \(2^{n-1} \) vertices, dimension \(\binom{n}{2} \)

- A face of the Birkhoff polytope \(B(n) \)

\[B(n) = \left\{ (b_{ij}) \in \mathbb{R}^{n \times n} \mid b_{ij} \geq 0, \sum_i b_{ij} = 1, \sum_j b_{ij} = 1 \right\} \]

= convex hull all \(n \times n \) permutation matrices

The normalized volume of \(\mathcal{CRY}_n \) has been shown analytically to be the product of Catalan numbers (Zeilberger, 1999), but no combinatorial proof is known.
$B(n)$ and CRY_n

$B(3)$ and CRY_3

CRY_3
From \mathcal{CRY}_n to a flow polytope

$\mathcal{CRY}_n := \{ (b_{ij}) \in \mathbb{R}_{\geq 0}^{n^2} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2 \}$

\begin{tabular}{ccc}
 a & b & c \\
■ & d & e \\
■ & f \\
\end{tabular}

$a, b, c, d, e, f \geq 0$
From CRY_n to a flow polytope

$\operatorname{CRY}_n := \left\{ (b_{ij}) \in \mathbb{R}_{\geq 0}^{n^2} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2 \right\}$

$$a + b + c = 1$$

$$a, b, c, d, e, f \geq 0$$
From \mathcal{CRY}_n to a flow polytope

$\mathcal{CRY}_n := \{(b_{ij}) \in \mathbb{R}^{n^2}_{\geq 0} | \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2\}$

\[
\begin{array}{ccc}
 a & b & c \\
\text{■} & d & e \\
 \text{■} & f \\
\end{array}
\]

\[
\begin{align*}
 a + b + c &= 1 \\
 d + e - a &= 0
\end{align*}
\]

\[a, b, c, d, e, f \geq 0\]
From \mathcal{CRY}_n to a flow polytope

$\mathcal{CRY}_n := \{(b_{ij}) \in \mathbb{R}_{\geq 0}^{n^2} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2\}$

\[
\begin{array}{ccc}
a & b & c \\
\text{■} & d & e \\
\text{■} & \text{■} & f
\end{array}
\]

\[
\begin{align*}
a + b + c &= 1 \\
d + e - a &= 0 \\
f - b - d &= 0
\end{align*}
\]

\[
a, b, c, d, e, f \geq 0
\]
From \mathcal{CRY}_n to a flow polytope

$\mathcal{CRY}_n := \{(b_{ij}) \in \mathbb{R}_{\geq 0}^{n^2} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2\}$

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
 & a & b & c & d & e & f \\
\hline
\text{■} & & & & & & \\
\text{■} & & & & & & \\
\end{array}
\]

\[
\begin{align*}
a + b + c &= 1 \\
d + e - a &= 0 \\
f - b - d &= 0 \\
-c - e - f &= -1
\end{align*}
\]

$a, b, c, d, e, f \geq 0$
From \mathcal{CRY}_n to a flow polytope

$\mathcal{CRY}_n := \{(b_{ij}) \in \mathbb{R}^{n^2}_{\geq 0} \mid \text{doubly-stochastic matrix, } b_{ij} = 0, i - j \geq 2\}$

\[\begin{array}{ccc}
 a & b & c \\
 \blacksquare & d & e \\
 \blacksquare & \blacksquare & f \\
\end{array}\]

\[\begin{align*}
 a + b + c &= 1 \\
 d + e - a &= 0 \\
 f - b - d &= 0 \\
 -c - e - f &= -1 \\
\end{align*}\]

$a, b, c, d, e, f \geq 0$

- \mathcal{CRY}_n is equivalent to the flow polytope of the complete graph K_{n+1} with netflow $(1, 0, \ldots, 0, -1)$.
Triangulations of Flow Polytopes

For certain graphs H with the special netflow vector $\mathbf{a} = (1, 0, \ldots, 0, -1)$, there is a systematic method for triangulating $\mathcal{F}_H(\mathbf{a})$.
Triangulations of Flow Polytopes

For certain graphs H with the special netflow vector $a = (1, 0, \ldots, 0, -1)$, there is a systematic method for triangulating $F_H(a)$.

For any graph G on vertices $\{1, 2, \ldots, n\}$, define a graph \tilde{G} on vertices $\{s, 1, 2, \ldots, n, t\}$ by connecting both s and t to all of the original vertices.
For certain graphs H with the special netflow vector $a = (1, 0, \ldots, 0, -1)$, there is a systematic method for triangulating $\mathcal{F}_H(a)$.

For any graph G on vertices $\{1, 2, \ldots, n\}$, define a graph \tilde{G} on vertices $\{s, 1, 2, \ldots, n, t\}$ by connecting both s and t to all of the original vertices.
Triangulations of Flow Polytopes

For certain graphs H with the special netflow vector $a = (1, 0, \ldots, 0, -1)$, there is a systematic method for triangulating $F_H(a)$.

For any graph G on vertices $\{1, 2, \ldots, n\}$, define a graph \tilde{G} on vertices $\{s, 1, 2, \ldots, n, t\}$ by connecting both s and t to all of the original vertices.
A Subdivision Lemma

Given a graph G, pick edges $(i, j), (j, k)$ in G with $i < j < k$.
A Subdivision Lemma

Given a graph G, pick edges $(i, j), (j, k)$ in G with $i < j < k$. Define three new graphs $G_1, G_2, \text{ and } G_3$ on the same vertex set by:

\[
E(G_1) = E(G) \setminus \{(j, k)\} \cup \{(i, k)\}
\]

\[
E(G_2) = E(G) \setminus \{(i, j)\} \cup \{(i, k)\}
\]

\[
E(G_3) = E(G) \setminus \{(i, j), (j, k)\} \cup \{(i, k)\}
\]
A Subdivision Lemma

Given a graph G, pick edges (i, j), (j, k) in G with $i < j < k$. Define three new graphs G_1, G_2, and G_3 on the same vertex set by:

$$E(G_1) = E(G) \setminus \{(j, k)\} \cup \{(i, k)\}$$

$$E(G_2) = E(G) \setminus \{(i, j)\} \cup \{(i, k)\}$$

$$E(G_3) = E(G) \setminus \{(i, j), (j, k)\} \cup \{(i, k)\}$$
A Subdivision Lemma

Given a graph G, pick edges $(i, j), (j, k)$ in G with $i < j < k$. Define three new graphs $G_1, G_2, \text{ and } G_3$ on the same vertex set by:

$$E(G_1) = E(G) \setminus \{(j, k)\} \cup \{(i, k)\}$$

$$E(G_2) = E(G) \setminus \{(i, j)\} \cup \{(i, k)\}$$

$$E(G_3) = E(G) \setminus \{(i, j), (j, k)\} \cup \{(i, k)\}$$

Lemma (Postnikov, Stanley):

For any netflow vector a, up to integral equivalence,

$$\mathcal{F}(G) = \mathcal{F}(G_1) \cup \mathcal{F}(G_2), \quad \mathcal{F}(G) \cap \mathcal{F}(G_1) = \emptyset, \text{ and } \mathcal{F}(G_1) \cap \mathcal{F}(G_2) = \mathcal{F}(G_3)$$
Reduction Trees

Given a graph G, call the construction of the graphs G_1, G_2, and G_3 a reduction on G.
Reduction Trees

Given a graph G, call the construction of the graphs G_1, G_2, and G_3 a reduction on G.

To subdivide the flow polytope of G, repeatedly perform reductions of G. This process is encoded in a reduction tree.
Reduction Trees

Given a graph G, call the construction of the graphs G_1, G_2, and G_3 a reduction on G.

To subdivide the flow polytope of G, repeatedly perform reductions of G. This process is encoded in a reduction tree.

To build a reduction tree of G begin with a root node labeled by G. Add three children labeled by G_1, G_2, and G_3 for a choice of reduction. Iterate this process until the graphs labeling the leaves of the tree cannot be reduced further.
Reduction Trees
Reduction Trees
Reduction Trees
Reduction Trees
Reduction Trees

If L_1, \ldots, L_m are the graphs labeling the leaves, of a reduction tree of G that have the same number of edges as G, then the subdivision Lemma implies $\left\{ \mathcal{F}_{L_i} : i = 1, \ldots, m \right\}$ induces a polyhedral subdivision of $\mathcal{F}_{\tilde{G}}$.
Why the Tilde?

The Subdivision Lemma holds without the tildes, but then the reduction tree only gives a dissection of F_G, not necessarily a triangulation.
Why the Tilde?

The Subdivision Lemma holds without the tildes, but then the reduction tree only gives a dissection of \mathcal{F}_G, not necessarily a triangulation.

With the tildes though...
Why the Tilde?

Let L be a leaf from the previous reduction tree:
Why the Tilde?

Let L be a leaf from the previous reduction tree:

What is the flow polytope of \tilde{L}?
Why the Tilde?

Let L be a leaf from the previous reduction tree:

What is the flow polytope of \tilde{L}?

If a vertex in a graph with netflow 0 has only one incoming or outgoing edge, contracting that edge yields a graph with an equivalent flow polytope.
Why the Tilde?

Let L be a leaf from the previous reduction tree:

What is the flow polytope of \tilde{L}?

If a vertex with netflow 0 in a graph has only one incoming (outgoing) edge, contracting that edge yields a graph with an equivalent flow polytope.
Why the Tilde?

Let L be a leaf from the previous reduction tree:

What is the flow polytope of \tilde{L}?

If a vertex with netflow 0 in a graph has only one incoming (outgoing) edge, contracting that edge yields a graph with an equivalent flow polytope.
Why the Tilde?

Let L be a leaf from the previous reduction tree:

$$L$$

What is the flow polytope of \tilde{L}?

$$\tilde{L} s \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & -1 \\ \end{array} t \cong \begin{array}{c} 1 \\ -1 \end{array} = \Delta^7$$

If a vertex with netflow 0 in a graph has only one incoming (outgoing) edge, contracting that edge yields a graph with an equivalent flow polytope.

The reduction tree of G encodes a triangulation of $\mathcal{F}_{\tilde{G}}$.
Why the Tilde?

Let L be a leaf from the previous reduction tree:

What is the flow polytope of \tilde{L}?

If a vertex with netflow 0 in a graph has only one incoming (outgoing) edge, contracting that edge yields a graph with an equivalent flow polytope.

The reduction tree of G encodes a triangulation of $\mathcal{F}_{\tilde{G}}$.

In the triangulation, the cells correspond to leaves L in the reduction tree with $\#E(L) = \#E(G)$, and their intersections correspond to the other leaves.
Degree Sequences

The actual graphs appearing as leaves in a reduction tree are dependent on the choices of reductions performed. To remedy this, consider only the right-degree sequences of the leaves.
Degree Sequences

The actual graphs appearing as leaves in a reduction tree are dependent on the choices of reductions performed. To remedy this, consider only the right-degree sequences of the leaves.

For a graph G on vertices $\{1, 2, \ldots, n\}$, let $\text{outdeg}_G(i)$ be the number of edges (i, j) with $i < j$. The right-degree sequence of G is the vector $(\text{outdeg}_G(1), \ldots, \text{outdeg}_G(n - 1))$.
Degree Sequences

The actual graphs appearing as leaves in a reduction tree are dependent on the choices of reductions performed. To remedy this, consider only the right-degree sequences of the leaves.

For a graph G on vertices $\{1, 2, \ldots, n\}$, let $\text{outdeg}_G(i)$ be the number of edges (i, j) with $i < j$. The right-degree sequence of G is the vector $(\text{outdeg}_G(1), \ldots, \text{outdeg}_G(n-1))$.
The actual graphs appearing as leaves in a reduction tree are dependent on the choices of reductions performed. To remedy this, consider only the right-degree sequences of the leaves.

For a graph G on vertices $\{1, 2, \ldots, n\}$, let $\text{outdeg}_G(i)$ be the number of edges (i, j) with $i < j$. The **right-degree sequence** of G is the vector $(\text{outdeg}_G(1), \ldots, \text{outdeg}_G(n - 1))$.

$$(3, 2, 0, 1)$$
Degree Sequences

The actual graphs appearing as leaves in a reduction tree are dependent on the choices of reductions performed. To remedy this, consider only the right-degree sequences of the leaves.

For a graph G on vertices $\{1, 2, \ldots, n\}$, let $\text{outdeg}_G(i)$ be the number of edges (i, j) with $i < j$. The right-degree sequence of G is the vector $(\text{outdeg}_G(1), \ldots, \text{outdeg}_G(n - 1))$

Let $\text{RD}(G)$ denote the multiset of right-degree vectors of leaves in a reduction tree of G.
Example Reduction Tree
Example Reduction Tree

\[RD(G) = \{(3,1,0), (2,1,0), (2,2,0), (2,1,0), (3,1,0), (2,1,1), (2,1,0)\} \]
Theorem (Escobar, Mészáros):
When G is a tree, $RD(G)$ is independent of the choice of reduction tree.
Theorem (Escobar, Mészáros): When G is a tree, $RD(G)$ is independent of the choice of reduction tree.

Theorem (Mészáros, St. Dizier): True for any G!
Right-Degree Polynomials

For a graph G on $[n]$, define the right-degree polynomial \mathcal{R}_G of G by:

$$\mathcal{R}_G(t_1, t_2, \ldots t_{n-1}) = \sum_{\alpha \in \text{RD}(G)} (-1)^{\text{codim}(\alpha)} t_1^{\alpha_1} t_2^{\alpha_2} \ldots t_{n-1}^{\alpha_{n-1}}$$

where $\text{codim}(\alpha) = \#E(G) - \sum_{j=1}^{n-1} \alpha_j$.
For a graph G on $[n]$, define the right-degree polynomial R_G of G by:

$$R_G(t_1, t_2, \ldots t_{n-1}) = \sum_{\alpha \in RD(G)} (-1)^{\text{codim}(\alpha)} t_{\alpha_1} t_{\alpha_2} \ldots t_{\alpha_{n-1}}$$

where $\text{codim}(\alpha) = \#E(G) - \sum_{j=1}^{n-1} \alpha_j$.

$$RD(G) = \{(4, 0, 1, 0), (4, 0, 1, 0), (3, 0, 2, 0), (3, 0, 1, 1), (3, 0, 1, 0), (3, 0, 1, 0), (3, 0, 1, 0)\}$$

$$R_G(t_1, t_2, t_3, t_4) = 2t_1^4 t_3 + t_1^3 t_2^2 + t_1^3 t_3 t_4 - 3t_1^3 t_3$$
Newton Polytopes

For a polynomial $f = \sum_{\alpha \in \mathbb{Z}^n_{\geq 0}} c_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{C}[x_1, \ldots, x_n]$, the Newton polytope is

$$\text{Newton}(f) = \text{Conv} \{ \alpha : c_{\alpha} \neq 0 \}.$$
Newton Polytopes

For a polynomial $f = \sum_{\alpha \in \mathbb{Z}^n_{\geq 0}} c_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{C}[x_1, \ldots, x_n]$, the Newton polytope is

$$\text{Newton}(f) = \text{Conv} \{ \alpha : c_{\alpha} \neq 0 \}.$$

The Newton polytope of a right-degree polynomial decomposes as a union of \textit{generalized permutohedra}.
Newton Polytopes

For a polynomial $f = \sum_{\alpha \in \mathbb{Z}_+^n} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{C}[x_1, \ldots, x_n]$, the Newton polytope is

$$\text{Newton}(f) = \text{Conv} \{ \alpha : c_\alpha \neq 0 \}.$$

The Newton polytope of a right-degree polynomial decomposes as a union of generalized permutahedra.

(Standard) Permutahedra - polytopes whose vertices are all rearrangements of a list of numbers.
Newton Polytopes

For a polynomial $f = \sum_{\alpha \in \mathbb{Z}^n_{\geq 0}} c_\alpha x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in \mathbb{C}[x_1, \ldots, x_n]$, the Newton polytope is

$$\text{Newton}(f) = \text{Conv} \{ \alpha : c_\alpha \neq 0 \}.$$

The Newton polytope of a right-degree polynomial decomposes as a union of generalized permutahedra.

(Standard) Permutahedra - polytopes whose vertices are all rearrangements of a list of numbers.

Generalized Permutahedra - polytopes obtained by deforming a standard permutahedron by parallel translation of the facets.
Further Questions

Goal: Use a good understanding of right-degree polynomials to study other families of polynomials in algebraic combinatorics.
Further Questions

Goal: Use a good understanding of right-degree polynomials to study other families of polynomials in algebraic combinatorics.

Theorem (Escobar, Mészáros):
For certain permutations $\pi \in S_n$, the Grothendieck polynomial G_π is a shift of the right-degree polynomial of a tree $T(\pi)$. In particular the Schubert polynomial S_π is a shift of the top homogeneous component of $R_{T(\pi)}$.
Further Questions

Goal: Use a good understanding of right-degree polynomials to study other families of polynomials in algebraic combinatorics.

Theorem (Escobar, Mészáros):

For certain permutations \(\pi \in S_n \), the Grothendieck polynomial \(G_\pi \) is a shift of the right-degree polynomial of a tree \(T(\pi) \). In particular the Schubert polynomial \(S_\pi \) is a shift of the top homogeneous component of \(R_{T(\pi)} \).

Can this be generalized to Grothendieck and Schubert polynomials of other permutations?
Further Questions

Goal: Use a good understanding of right-degree polynomials to study other families of polynomials in algebraic combinatorics.

Theorem (Escobar, Mészáros):
For certain permutations $\pi \in S_n$, the Grothendieck polynomial G_{π} is a shift of the right-degree polynomial of a tree $T(\pi)$. In particular the Schubert polynomial S_{π} is a shift of the top homogeneous component of $R_{T(\pi)}$.

Can this be generalized to Grothendieck and Schubert polynomials of other permutations?

To other classes of polynomials such as key polynomials?
Thanks for listening!