Problems on derivatives

September 23, 2016

Problems

Problem 1. Consider the function \(f(x) = \begin{cases} x^2, & \text{if } x \text{ rational} \\ -x^2, & \text{if } x \text{ irrational} \end{cases} \). Does the derivative \(f'(0) \) exist and why?

(a) yes;
(b) no;
(c) not possible to tell.

Solution: (a). We have seen before that the only point where \(f(x) \) is even continuous is the point \(x = 0 \). So the only point where it might potentially have derivative is \(x = 0 \). By definition,

\[
 f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h}
\]

If \(h \) is rational, \(\frac{f(h)}{h} = h \), and if \(h \) is irrational, \(\frac{f(h)}{h} = -h \). So we are really interested if the function \(g(h) = \begin{cases} h, & \text{if } h \text{ rational} \\ -h, & \text{if } h \text{ irrational} \end{cases} \) has limit when \(h = 0 \). And indeed, by the Sandwich theorem, \(g(h) \) is squeezed between \(|h|\) and \(-|h|\) so it must have limit at \(h = 0 \), which equals 0.

Problem 2. True or False: The function \(g(x) = x|x| \) does not have a derivative at \(x = 0 \), because \(|x|\) is not differentiable at \(x = 0 \).

Solution: False. By definition of derivative, \(g'(0) = \lim_{h \to 0} \frac{h|h|}{h} = \lim_{h \to 0} |h| = 0 \).

Problem 3. Find the derivative \(\frac{d}{dx}(e^x) \).

Solution: Since \(e^x \) is a constant, the derivative \(\frac{d}{dx}(e^x) = 0 \).

Problem 4. Find the equation of tangent line to the graph of \(f(x) = 2x^3 \) at the point \(x = 1 \).

Solution: The slope is \(f'(1) = 6 \cdot 1^2 = 6 \), and so the equation is \(y = 6x - 4 \).

Problem 5. Suppose you cut a slice of pizza from a circular pizza of radius \(r \), as shown.

As you change the size of the angle \(\theta \), you change the area of the slice \(A = \frac{1}{2}r^2\theta \). Then \(A' \) is

(a) \(r\theta \)
(b) \(\frac{1}{2}r^2 \).

Solution: The variable is \(\theta \) since it’s that angle that’s changing, not the radius. So the derivative is \(\frac{1}{2}r^2 \).

Problem 6. We know that for some function \(f \), \(f(1) = 1 \) and \(f'(1) = 3 \). Find the derivative of \(\frac{f(x)}{x^2} \) at \(x = 1 \).

Solution: Using the power rule, \((x^{-2}f(x))' = -2x^{-3}f(x) + x^{-2}f'(x)\), and so the derivative of \(\frac{f(x)}{x^2} \) at \(x = 1 \) is \(-2 \cdot 1 \cdot f(1) + 1 \cdot f'(1) = -2 + 3 = 1 \).
Problem 7. Differentiate $f(x) = \frac{x^3}{3x-1}$.

Solution: Using the division rule, we get $f'(x) = \frac{2x(3x-1)-3x^3}{(3x-1)^2} = \frac{-2x}{(3x-1)^2}$.

Problem 8. Calculate $f^{(n)}(0)$ for $f(x) = x^n e^x$.

Solution: Do it for small n first, for example for $n = 1, 2, 3$. In general, we notice that the only time a term will not die after plugging in $x = 0$ is when it’s of the form const $\cdot e^x$. The only such term is $n!e^x$, and so $f^{(n)}(0) = n!$.