Problems

Problem 1. Find the following.

1. \[\int_0^{2\pi} \cos(x) \, dx \]

2. The unsigned area bounded by \(\cos(x) \) between 0 and \(2\pi \).

3. \[\int \frac{1}{x^2} \sin \left(\frac{1}{x} \right) \, dx \]

4. \[\int_{-1}^{1} t^3(1 + t^4)^3 \, dt \]

5. \[\int_0^{\pi/4} \tan x \, dx \]
Problem 2. Below is the graph of a function f.

Let $g(x) = \int_0^x f(t)dt$. Find $g(0), g'(0)$ and $g'(2)$.

For $0 < x < 2$ the function $g(x)$ is

1. increasing and concave up;
2. increasing and concave down;
3. decreasing and concave up;
4. decreasing and concave down.

Problem 3. Find the area of the propeller-shaped region enclosed by the curves $x - y^{1/3} = 0$ and $x - y^{1/5} = 0$.

Problem 4. Let $f(x) = \int_{x^2}^{x^3} (t^2 - t)^2dt$. Find $f'(x)$.
Problem 5. A rocket lifts o the surface of Earth with a constant acceleration of 20 m/sec2. How fast will the rocket be going 1 minute later?

Problem 6. Compute the integral $\int \sqrt{1-x^2}dx$. (Hint: $u = \arcsin x$ means $x = \sin u$.)

Use it to compute $\int_{-1}^{1} \sqrt{1-x^2}dx$. Does the result match what you would expect from the usual geometric considerations?

Problem 7. Using definite integrals, find the limit of the following sum:

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right)$$

(Hint: $\frac{1}{n+i} = \frac{1}{n} \cdot \frac{1}{1 + \frac{i}{n}}$)
Problem 8. Using Riemann sums, find the formula for computing the volume of a cone of height h and radius r. You can use the formula for the volume of a cylinder.