Problem 1. Let G be a group. Show that if G is non-abelian, then the maps defined by $g.a = ag$ for all $g, a \in G$ do not satisfy the axioms of a (left) group action of G on itself.

Problem 2. Let S_n act on \mathbb{R}^n by permuting coordinates of vectors: for $\sigma \in S_n$ and $v = (c_1, \ldots, c_n)$ let $\sigma.v$ to be $\sigma.v = (c_{\sigma(1)}, \ldots, c_{\sigma(n)})$. Check that this is not an action of S_n on \mathbb{R}^n according to our definition! (Hint: take $n = 3$, $\sigma_1 = (12)$ and $\sigma_2 = (23)$ and see that something goes wrong.)

What goes wrong in general?

Prove that if we put $\sigma.v$ to be $\sigma.v = (c_{\sigma^{-1}(1)}, \ldots, c_{\sigma^{-1}(n)})$, then we will actually get an action as defined in the lectures.

Problem 3. Prove that any group G acts on itself via $g.x := gxg^{-1}$.

The action of G on itself via $g.x := gxg^{-1}$ is called conjugation. Orbits of this action are called conjugacy classes.

Problem 4. Let G be any abelian group. Describe its conjugacy classes.

Prove that two permutations $s, t \in S_n$ belong to the same conjugacy class if and only if they have the same number of cycles of each length. Thus, the number of conjugacy classes in S_n is the number $p(n)$ of partitions of n.

Find conjugacy classes in S_3 and S_4.

Problem 5. Find conjugacy classes in the alternating group A_5. Are cycles (12345) and (12354) conjugate in A_5?

Problem 6. Let $GL_2(\mathbb{R})$ act on \mathbb{R}^2 in the usual way, i.e.

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \cdot \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} = \begin{bmatrix}
 ax_1 + bx_2 \\
 cx_1 + dx_2
\end{bmatrix}
\]

Describe all orbits and stabilizers of this action. (Hint: there are two of them.)

Problem 7. Let $GL_2(\mathbb{Z})$ be the group of invertible 2×2 matrices with integer coefficients whose inverse also has integral coefficients. Let $GL_2(\mathbb{Z})$ act on \mathbb{Z}^2 the same way as $GL_2(\mathbb{R})$ acts on \mathbb{R}^2. Describe all orbits of this action and all stabilizers. (Hint: an orbit consists of vectors, whose coordinates have the same g.c.d.)