Think of permutations as **vertices of a graph**.

Two vertices are connected by an edge if there is a permitted transition (according to bell ringers) that transforms one change into the other. Here what it looks like for 4 bells:
Hamiltonian cycle

- An extent is a path in this graph, visiting each of the vertices exactly once, and returning to the beginning vertex. Such tours are called Hamiltonian cycles.
- For Plain Bob, this path looks like that:
Let G be a group, and let S be a generating set of elements.

Definition

Let $\text{Cay}(G, S)$ be the colored directed graph having G as the set of vertices, and for any $s \in S$ there is an edge going from g to gs, and any such edge is colored into a unique color c_s corresponding to $s \in S$.

- Draw Cayley graphs for \mathbb{Z} with $S_1 = \{1\}$, and with $S_2 = \{2, 3\}$.
- Do the same for $\mathbb{Z}/6$ and $S = \{1\}$.
Let G be a group, and let S be a generating set of elements.

Definition

Let $\text{Cay}(G, S)$ be the colored directed graph having G as the set of vertices, and for any $s \in S$ there is an edge going from g to gs, and any such edge is colored into a unique color c_s corresponding to $s \in S$.

- Draw Cayley graphs for \mathbb{Z} with $S_1 = \{1\}$, and with $S_2 = \{2, 3\}$.
- Do the same for $\mathbb{Z}/6$ and $S = \{1\}$.
- How about $\mathbb{Z}/3 \times \mathbb{Z}/2$ with $S = \{(1, 0), (0, 1)\}$?
Let G be a group, and let S be a generating set of elements.

Definition

Let $\text{Cay}(G, S)$ be the colored directed graph having G as the set of vertices, and for any $s \in S$ there is an edge going from g to gs, and any such edge is colored into a unique color c_s corresponding to $s \in S$.

- Draw Cayley graphs for \mathbb{Z} with $S_1 = \{1\}$, and with $S_2 = \{2, 3\}$.
- Do the same for $\mathbb{Z}/6$ and $S = \{1\}$.
- How about $\mathbb{Z}/3 \times \mathbb{Z}/2$ with $S = \{(1, 0), (0, 1)\}$?
- D_4 with generators r_{90} (rotation by 90°) and s_h (vertical reflection)?
Properties of Cayley graphs

- Prove that any Cayley graph is connected (if we ignore the orientation of edges).
Properties of Cayley graphs

- Prove that any Cayley graph is connected (if we ignore the orientation of edges).
- Between any two vertices g, h there is at most one edge.
Properties of Cayley graphs

- Prove that any Cayley graph is connected (if we ignore the orientation of edges).
- Between any two vertices g, h there is at most one edge.
- All vertices have the same degrees.
Properties of Cayley graphs

- Prove that any Cayley graph is connected (if we ignore the orientation of edges).
- Between any two vertices g, h there is at most one edge.
- All vertices have the same degrees.
- What do (un-oriented) cycles in Cayley graphs mean?
• Prove that any Cayley graph is connected (if we ignore the orientation of edges).
• Between any two vertices g, h there is at most one edge.
• All vertices have the same degrees.
• What do (un-oriented) cycles in Cayley graphs mean?
• Any group acts on its Cayley graph, sending a vertex corresponding to h to the vertex corresponding to gh.
Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph.

Question (Mr. Drix): how to see group multiplication from it?

Double the graph: for each edge add another one going in the opposite direction. Call the resulting graph $\tilde{\Gamma}$.

Or, equivalently, forget the orientation of edges at all.

Let \hat{P}_Γ be the set of paths in $\tilde{\Gamma}$.

Let \tilde{G} be the set of equivalence classes of elements in \hat{P}_Γ starting at the vertex e, where two paths are called equivalent iff they differ by (oriented) cycles.
Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph.

Question (Mr. Drix): how to see group multiplication from it?

1. Double the graph: for each edge add another one going in the opposite direction. Call the resulting graph $\tilde{\Gamma}$.
2. Or, equivalently, forget the orientation of edges at all.
3. Let P_Γ be the set of paths in $\tilde{\Gamma}$.
4. Let \tilde{G} be the set of equivalence classes of elements in P_Γ starting at the vertex e, where two paths are called equivalent iff they differ by (oriented) cycles.
Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph.

Question (Mr. Drix): how to see group multiplication from it?

2. Double the graph: for each edge add another one going in the opposite direction. Call the resulting graph $\widetilde{\Gamma}$.

3. Or, equivalently, forget the orientation of edges at all.
1. Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph.

Question (Mr. Drix): how to see group multiplication from it?

2. Double the graph: for each edge add another one going in the opposite direction. Call the resulting graph $\tilde{\Gamma}$.

3. Or, equivalently, forget the orientation of edges at all.

4. Let P_Γ be the set of paths in $\tilde{\Gamma}$.
Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph.

Question (Mr. Drix): how to see group multiplication from it?

Double the graph: for each edge add another one going in the opposite direction. Call the resulting graph $\tilde{\Gamma}$.

Or, equivalently, forget the orientation of edges at all.

Let P_Γ be the set of paths in $\tilde{\Gamma}$.

Let \tilde{G} be the set of equivalence classes of elements in P_Γ starting at the vertex e, where two paths are called equivalent iff they differ by (oriented) cycles.
Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.

Let's define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$. Let $a_0 \in [a]$ be a path starting at the vertex $e \in G$, and ending at g_0. Pick a path b_0 from the class $[b]$ ending at h_0. It's given by a sequence $e, s_i^1, s_i^1 s_i^2, \ldots, s_i^1 s_i^2 \ldots s_i^r = h_0$. We then define $[a] \ast [b]$ to be the equivalence class of the composite path, first going along a_0, then continuing as $g_0 s_i^1, g_0 s_i^1 s_i^2$, etc. all the way up to $g_0 h_0$.

Claim: \tilde{G} with the multiplication \ast is a group, and is isomorphic to G.

Sasha Patotski (Cornell University)
Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.

Let’s define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$.

Claim: \tilde{G} with the multiplication \ast is a group, and is isomorphic to G.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015 7 / 13
Group from its Cayley graph

- Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.
- Let’s define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$.
- Let $a_0 \in [a]$ be a path starting at the vertex $e \in G$, and ending at g_0.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015 7 / 13
Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.

Let’s define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$.

Let $a_0 \in [a]$ be a path starting at the vertex $e \in G$, and ending at g_0.

Pick a path b_0 from the class $[b]$ ending at h_0.
It’s given by a sequence $e, s_{i_1}, s_{i_1} s_{i_2}, \ldots, s_{i_1} s_{i_2} \cdots s_{i_r} = h_0$.
Group from its Cayley graph

- Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.
- Let's define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$.
- Let $a_0 \in [a]$ be a path starting at the vertex $e \in G$, and ending at g_0.
- Pick a path b_0 from the class $[b]$ ending at h_0.
 It's given by a sequence $e, s_{i_1}, s_{i_1}s_{i_2}, \ldots, s_{i_1}s_{i_2}\ldots s_{i_r} = h_0$.
- We then define $[a] \ast [b]$ to be the equivalence class of the composite path, first going along a_0, then continuing as $g_0s_{i_1}, g_0s_{i_1}s_{i_2}$ etc. all the way up to g_0h_0.

Claim: \tilde{G} with the multiplication \ast is a group, and is isomorphic to G.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015
Let \tilde{G} be the set of equivalence classes of paths in $\tilde{\Gamma}$ starting at the vertex e, where two paths are called equivalent iff they differ by some (oriented) cycles.

Let’s define multiplication on \tilde{G}. Take two equivalence classes of paths, say $[a]$ and $[b]$.

Let $a_0 \in [a]$ be a path starting at the vertex $e \in G$, and ending at g_0.

Pick a path b_0 from the class $[b]$ ending at h_0. It’s given by a sequence $e, s_{i_1}, s_{i_1}s_{i_2}, \ldots, s_{i_1}s_{i_2}\ldots s_{i_r} = h_0$.

We then define $[a] \ast [b]$ to be the equivalence class of the composite path, first going along a_0, then continuing as $g_0s_{i_1}$, $g_0s_{i_1}s_{i_2}$ etc. all the way up to g_0h_0.

Claim: \tilde{G} with the multiplication \ast is a group, and is isomorphic to G.
Claim: \tilde{G} with the multiplication \ast is a group, and is isomorphic to G.

\tilde{G} has identity and inverse obviously but not clearly associative.

Let's define a map $\tilde{G} \to G$ sending equivalence class $[a]$ to the end-point of its representative. This is well-defined: the end-point doesn't depend on the choice. This is obviously a homomorphism, and it's clearly surjective. It's also injective, so we get an isomorphism.

Done.
Claim: \(\tilde{G} \) with the multiplication \(\ast \) is a group, and is isomorphic to \(G \).

\(\tilde{G} \) has identity and inverse obviously but not clearly associative.

Let’s define a map \(\tilde{G} \to G \) sending equivalence class \([a]\) to the end-point of it’s representative.
Claim: \(\tilde{G} \) with the multiplication \(\ast \) is a group, and is isomorphic to \(G \).

\(\tilde{G} \) has identity and inverse obviously but not clearly associative.

Let’s define a map \(\tilde{G} \rightarrow G \) sending equivalence class \([a]\) to the end-point of it’s representative.

This is well-defined: the end-point doesn’t depend on the choice.
Claim: \(\tilde{G} \) with the multiplication \(*\) is a group, and is isomorphic to \(G \).
\(\tilde{G} \) has identity and inverse obviously but not clearly associative.
Let’s define a map \(\tilde{G} \to G \) sending equivalence class \([a]\) to the end-point of it’s representative.
This is well-defined: the end-point doesn’t depend on the choice.
This is obviously a homomorphism, and it’s clearly surjective.
Claim: \(\tilde{G} \) with the multiplication \(\ast \) is a group, and is isomorphic to \(G \).
\(\tilde{G} \) has identity and inverse obviously but not clearly associative.
Let’s define a map \(\tilde{G} \to G \) sending equivalence class \([a]\) to the end-point of it’s representative.
This is well-defined: the end-point doesn’t depend on the choice.
This is obviously a homomorphism, and it’s clearly surjective.
It’s also injective, so we get an isomorphism. Done.
Using the method above, see how it reconstructs the groups \mathbb{Z}, \mathbb{Z}^2 and \mathbb{Z}/n.
1. Using the method above, see how it reconstructs the groups \mathbb{Z}, \mathbb{Z}^2 and \mathbb{Z}/n.

2. Can any graph appear as a Cayley graph of a group?
Free groups

1. Using the method above, see how it reconstructs the groups \mathbb{Z}, \mathbb{Z}^2 and \mathbb{Z}/n.

2. Can any graph appear as a Cayley graph of a group?

3. Think about how to construct a group with no relations (say, generated by two elements).
Free groups

1. Using the method above, see how it reconstructs the groups \mathbb{Z}, \mathbb{Z}^2 and \mathbb{Z}/n.

2. Can any graph appear as a Cayley graph of a group?

3. Think about how to construct a group with no relations (say, generated by two elements).
Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

In other words, H is normal if and only if all left cosets are the same as right cosets, $gH = Hg$. If G is abelian, every subgroup is normal.

The subgroup of rotations in the group D_4 of symmetries of a square is normal.

The subgroup A_n of even permutations is normal in S_n.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015
10 / 13
Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called **normal** if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- In other words, H is normal if and only if all left cosets are the same as right cosets, $gH = Hg$.
Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- In other words, H is normal if and only if all left cosets are the same as right cosets, $gH = Hg$.
- If G is abelian, every subgroup is normal.
Normal subgroups

Definition
Let G be a group, and H be a subgroup. The subgroup H is called normal if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- In other words, H is normal if and only if all left cosets are the same as right cosets, $gH = Hg$.
- If G is abelian, every subgroup is normal.
- The subgroup of rotations in the group D_4 of symmetries of a square is normal.
Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- In other words, H is normal if and only if all left cosets are the same as right cosets, $gH = Hg$.
- If G is abelian, every subgroup is normal.
- The subgroup of rotations in the group D_4 of symmetries of a square is normal.
- The subgroup A_n of even permutations is normal in S_n.
The point is: if H is normal, the set of cosets G/H has a natural group structure. This group is called the \textbf{quotient group}.

- We define $aH \ast bH := abH$. Prove that it’s well defined!
The point is: if H is normal, the set of cosets G/H has a natural group structure. This group is called the quotient group.

- We define $aH \ast bH := abH$. Prove that it’s well defined!
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots \}$. Prove that $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.
The point is: if H is normal, the set of cosets G/H has a natural group structure. This group is called the quotient group.

- We define $aH \ast bH := abH$. Prove that it’s well defined!
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots \}$. Prove that $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.
- Prove that $S_n/A_n \simeq \mathbb{Z}/2$.

\mathbb{R}/\mathbb{Z} is a circle \mathbb{S}^1.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015 11 / 13
Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group structure. This group is called the quotient group.

- We define $aH \ast bH := abH$. Prove that it's well defined!
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots \}$. Prove that $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.
- Prove that $S_n/A_n \simeq \mathbb{Z}/2$.
- Prove that $G \times H/H \simeq G$, where $H \subset G \times H$ is the subgroup $H = \{(e, h) \mid h \in H\}$.

Sasha Patotski (Cornell University)
The point is: if H is normal, the set of cosets G/H has a natural group structure. This group is called the **quotient group**.

- We define $aH \ast bH := abH$. Prove that it’s well defined!
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots \}$. Prove that $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n$.
- Prove that $S_n/A_n \cong \mathbb{Z}/2$.
- Prove that $G \times H/H \cong G$, where $H \subset G \times H$ is the subgroup $H = \{(e, h) \mid h \in H\}$.
- \mathbb{R}/\mathbb{Z} is a circle S^1.

Let G be a group and K be another group, on which G acts by automorphisms, i.e. isomorphisms to itself.

In other words, for each $g \in G$ we have assigned an isomorphism $A_g : K \rightarrow K$, such that $A_e = id$ and $A_{gh} = A_g \circ A_h$. We write $g \cdot k$ (or $g.k$) for $A_g(k)$.

Note that K is a normal subgroup in $G \rtimes K$, and $G \rtimes K / K \cong G$.

If G acts trivially on K, then $G \rtimes K \cong G \times K$.

The group D_{2n} of symmetries of the n-gon is $\mathbb{Z}/2 \rtimes \mathbb{Z}/n$, where the action of $\mathbb{Z}/2$ on \mathbb{Z}/n is by $a \mapsto -a$.

Sasha Patotski (Cornell University)
Cayley graphs. Normal subgroups
December 21, 2015 12 / 13
Semidirect product

- Let G be a group and K be another group, on which G acts by **automorphisms**, i.e. isomorphisms to itself.
- In other words, for each $g \in G$ we have assigned an isomorphism $A_g : K \to K$, such that $A_e = id$ and $A_{gh} = A_g \circ A_h$. We write $g \cdot k$ (or $g.k$) for $A_g(k)$.
- We define $G \rtimes K$ to be the set $K \times G$ with the operation

$$(k_1, g_1) \ast (k_2, g_2) = (k_1 \ g_1 k_2, g_1 \cdot g_2)$$

Note that K is a normal subgroup in $G \rtimes K$, and $G \rtimes K / K \cong G$.

If G acts trivially on K, then $G \rtimes K \cong G \times K$.

The group D_{2n} of symmetries of the n-gon is $\mathbb{Z}/2 \rtimes \mathbb{Z}/n$, where the action of $\mathbb{Z}/2$ on \mathbb{Z}/n is by $a \mapsto -a$.

Sasha Patotski (Cornell University)
Semidirect product

- Let G be a group and K be another group, on which G acts by **automorphisms**, i.e. isomorphisms to itself.

- In other words, for each $g \in G$ we have assigned an isomorphism $A_g : K \to K$, such that $A_e = id$ and $A_{gh} = A_g \circ A_h$. We write $g \cdot k$ (or $g.k$) for $A_g(k)$.

- We define $G \rtimes K$ to be the set $K \times G$ with the operation

$$ (k_1, g_1) \ast (k_2, g_2) = (k_1 \cdot g_1 k_2, g_1 \cdot g_2) $$

- Note that K is a normal subgroup in $G \rtimes K$, and $G \rtimes K/K \simeq G$.
Let G be a group and K be another group, on which G acts by automorphisms, i.e. isomorphisms to itself.

In other words, for each $g \in G$ we have assigned an isomorphism $A_g : K \to K$, such that $A_e = id$ and $A_{gh} = A_g \circ A_h$. We write $g.k$ (or $g.k$) for $A_g(k)$.

We define $G \rtimes K$ to be the set $K \times G$ with the operation

$$(k_1, g_1) \ast (k_2, g_2) = (k_1 g_1 k_2, g_1 \cdot g_2)$$

Note that K is a normal subgroup in $G \rtimes K$, and $G \rtimes K / K \simeq G$.

If G acts trivially on K, then $G \rtimes K \simeq G \times K$.

The group D_{2n} of symmetries of the n-gon is $\mathbb{Z}_{/2} \rtimes \mathbb{Z}_{/n}$, where the action of $\mathbb{Z}_{/2}$ on $\mathbb{Z}_{/n}$ is by $a \mapsto -a$.

Sasha Patotski (Cornell University)
Let G be a group and K be another group, on which G acts by **automorphisms**, i.e. isomorphisms to itself.

In other words, for each $g \in G$ we have assigned an isomorphism $A_g : K \rightarrow K$, such that $A_e = id$ and $A_{gh} = A_g \circ A_h$.

We write $g.k$ (or $g.k$) for $A_g(k)$.

We define $G \ltimes K$ to be the set $K \times G$ with the operation

$$(k_1, g_1) \ast (k_2, g_2) = (k_1^{g_1} k_2, g_1 \cdot g_2)$$

Note that K is a normal subgroup in $G \ltimes K$, and $G \ltimes K / K \cong G$.

If G acts trivially on K, then $G \ltimes K \cong G \times K$.

The group D_{2n} of symmetries of the n-gon is $\mathbb{Z}/2 \ltimes \mathbb{Z}/n$, where the action of $\mathbb{Z}/2$ on \mathbb{Z}/n is by $a \mapsto -a$.

Semidirect product

Theorem

Let G be a group, and H, K are two subgroups. Suppose that

- $H \cap K = \{e\}$;
- $G = KH$ as a set;
- K is a normal subgroup of G.

Then $G \cong H \rtimes K$, where the action of H on K is given by conjugation $h \cdot k = hkh^{-1}$.