Weighted Polya Theorem. Solitaire

Sasha Patotski

Cornell University

ap744@cornell.edu

December 15, 2015
Cosets

- For a group G and a subgroup $H \subset G$, cosets are subsets of G of the form gH and Hg for $g \in G$.
- Let G act on a set X, pick a point $x \in X$ and let Gx and G_x be its orbit and stabilizer.

Lemma 1. The orbit Gx is in a natural bijection with the set of cosets $G/G_x = \{gG_x \mid g \in G\}$. In particular, for finite groups, $|Gx| = |G|/|G_x|$.

Lemma 2. For any other point $y \in Gx$ of the orbit of x, the stabilizer of G_y is $G_y = gG_xg^{-1}$ for some $g \in G$. In particular, for finite groups, all the stabilizers of points from the same orbit have the same number of elements.
Theorem

Suppose that a finite group \(G \) acts on a finite set \(X \). Then the number of colorings of \(X \) in \(n \) colors inequivalent under the action of \(G \) is

\[
N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}
\]

where \(c(g) \) is the number of cycles of \(g \) as a permutation of \(X \).
The number of colorings of X in n colors inequivalent under the action of G is
\[N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)} \]
where $c(g)$ is the number of cycles of g as a permutation of X.
The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n.
Proof of Polya’s Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n.
- Let’s instead count the pairs (g, C) with $C \in X_n$ a coloring and $g \in G_C \subset G$ an element of G preserving C.
Proof of Polya’s Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n.
- Let’s instead count the pairs (g, C) with $C \in X_n$ a coloring and $g \in G_C \subset G$ an element of G preserving C.
- The orbit GC of C has $|G|/|G_C|$ elements (used Lemma 1).
Proof of Polya’s Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where $c(g)$ is the number of cycles of g as a permutation of X.

- Let X_n be the set of colorings of X in n colors. Then we want to compute the number of G-orbits on X_n.
- Let’s instead count the pairs (g, C) with $C \in X_n$ a coloring and $g \in G_C \subset G$ an element of G preserving C.
- The orbit GC of C has $|G|/|G_C|$ elements (*used Lemma 1*).
- Each element of GC will appear $|G_C|$ times (*used Lemma 2*).
- Thus each orbit of X_n will appear $|G_C| \cdot |G|/|G_C| = |G|$ many times in our counting. So to find $N(n)$ need to divide the result by $|G|$.
Want: to count pairs \((g, C)\) with \(C\) being a coloring of \(X\), and \(g \in G\) preserving \(C\).
Proof of Polya’s Theorem

- **Want:** to count pairs \((g, C)\) with \(C\) being a coloring of \(X\), and \(g \in G\) preserving \(C\).

- For each \(g \in G\), let’s count in how many pairs \((g, C)\) is can appear, i.e. we need to find for each \(g\) how many colorings are invariant under \(g\).
Proof of Polya’s Theorem

- **Want**: to count pairs \((g, C)\) with \(C\) being a coloring of \(X\), and \(g \in G\) preserving \(C\).
- For each \(g \in G\), let’s count in how many pairs \((g, C)\) is can appear, i.e. we need to find for each \(g\) how many colorings are invariant under \(g\).
- Decomposing \(X\) into orbits (=cycles) of \(g\), we see that the color along each cycle must be constant, and that’s the only restriction.

This gives \(n_c(g)\) invariant colorings.

Summing over all \(g \in G\) and dividing by \(|G|\) gives the required formula.
Proof of Polya’s Theorem

- **Want**: to count pairs \((g, C)\) with \(C\) being a coloring of \(X\), and \(g \in G\) preserving \(C\).
- For each \(g \in G\), let’s count in how many pairs \((g, C)\) is can appear, i.e. we need to find for each \(g\) how many colorings are invariant under \(g\).
- Decomposing \(X\) into orbits (=cycles) of \(g\), we see that the color along each cycle must be constant, and that’s the only restriction.
- This gives \(n^{c(g)}\) invariant colorings.
Proof of Polya’s Theorem

- **Want:** to count pairs \((g, C)\) with \(C\) being a coloring of \(X\), and \(g \in G\) preserving \(C\).

- For each \(g \in G\), let’s count in how many pairs \((g, C)\) is can appear, i.e. we need to find for each \(g\) how many colorings are invariant under \(g\).

- Decomposing \(X\) into orbits (=cycles) of \(g\), we see that the color along each cycle must be constant, and that’s the only restriction.

- This gives \(n^{c(g)}\) invariant colorings.

- Summing over all \(g \in G\) and dividing by \(|G|\) gives the required formula.
Weighted Polya theorem

Let \(c_m(g) \) denote the number of cycles of length \(m \) in \(g \in G \) when permuting a finite set \(X \).

Theorem (Weighted Polya theorem)

The number of colorings of \(X \) into \(n \) colors with exactly \(r_i \) occurrences of the \(i \)-th color is the coefficient of \(t_1^{r_1} \ldots t_n^{r_n} \) in the polynomial

\[
P(t_1, \ldots, t_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1} (t_1^m + \cdots + t_n^m)^{c_m(g)}
\]
Let \(c_m(g) \) denote the number of cycles of length \(m \) in \(g \in G \) when permuting a finite set \(X \).

Theorem (Weighted Polya theorem)

The number of colorings of \(X \) into \(n \) colors with exactly \(r_i \) occurrences of the \(i \)-th color is the coefficient of \(t_1^{r_1} \cdots t_n^{r_n} \) in the polynomial

\[
P(t_1, \ldots, t_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1} \left(t_1^m + \cdots + t_n^m \right)^{c_m(g)}
\]

- The previous formula is obtained by putting \(t_1 = \cdots = t_n = 1 \).
Let $c_m(g)$ denote the number of cycles of length m in $g \in G$ when permuting a finite set X.

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly r_i occurrences of the i-th color is the coefficient of $t_1^{r_1} \cdots t_n^{r_n}$ in the polynomial

\[
P(t_1, \ldots, t_n) = \frac{1}{|G|} \sum_{g \in G} \prod_{m \geq 1} (t_1^m + \cdots + t_n^m)^{c_m(g)}
\]

- The previous formula is obtained by putting $t_1 = \cdots = t_n = 1$.
- What is the number of necklaces with exactly 2 white and 2 black beads? exactly 1 white and 3 black?
(Peg) Solitaire board
A move in the game consists of picking up a marble, and jumping it horizontally or vertically (but not diagonally) over a single marble into a vacant hole, removing the marble that was jumped over.
The goal

The game is won by finishing with a single marble left on the board, in the central hole.
The goal

- The game is won by finishing with a single marble left on the board, in the central hole.
- **Question:** is it easier to win the game finishing at any spot on the board?
- In other words, are there more winning strategies if we relax the winning condition?
The goal

- The game is won by finishing with a single marble left on the board, in the central hole.

Question: is it easier to win the game finishing at any spot on the board?

- In other words, are there more winning strategies if we relax the winning condition?

- Color spots on the board with **non-trivial** elements of $\mathbb{Z}/2 \times \mathbb{Z}/2$ so that for any 3 consecutive positions (row or column) there are all three elements (let’s call them f, g, h).

(We just re-denote $f = (1, 0)$, $g = (0, 1)$, $h = (1, 1)$.)
<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>h</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>f</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>h</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>h</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>h</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>f</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>
Main trick

- Define **total value** of a board after some moves as the multiplication of all the group elements sitting on the non-empty spots.
Main trick

- Define **total value** of a board after some moves as the multiplication of all the group elements sitting on the non-empty spots.
- The value of the board does not change when doing moves!
Main trick

- Define **total value** of a board after some moves as the multiplication of all the group elements sitting on the non-empty spots.
- The value of the board does not change when doing moves!

So we should end up with a marble in a position labeled by \(h \) (15 possibilities).
Observation: allowed moves are invariant under symmetries of the board.
Observation: allowed moves are invariant under symmetries of the board.

Thus, if there is a sequence of moves finishing in one spot, then there is a sequence of moves finishing in a symmetric spot.

In other words, there is an action of the group D_4 on the set of all possible states of the board.
One more main trick

- **Observation:** allowed moves are invariant under symmetries of the board.
- Thus, if there is a sequence of moves finishing in one spot, then there is a sequence of moves finishing in a symmetric spot.
- In other words, there is an action of the group D_4 on the set of all possible states of the board.
- Thus we can only finish in the following spots:
If we finished the game in one of the 4 non-central positions. How could that happen?
If we finished the game in one of the 4 non-central positions. How could that happen?

So we might have as well finished in the middle spot.
Generalizations

What about Solitaire games of other shapes?

Figure: French Solitaire
What about Solitaire games of other shapes?