Groups of transformations

Sasha Patotski

Cornell University

ap744@cornell.edu

November 3, 2015
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.

- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
- What are their orders, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?
- Is such an expression unique?
- Do symmetries s_{AB}, s_{BC} commute?
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: with and without fixed points.

Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.

What are their orders, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?

Express all symmetries as compositions of s_{AB}, s_{BC}.

Can you express any symmetry as a composition of s_{AB} and c? Is such an expression unique?

Do symmetries s_{AB}, s_{BC} commute?
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: **with** and **without** fixed points.
- Symmetries can be composed (i.e. applied one after another).
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: with and without fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: **with** and **without** fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices \(A, B, C \), and vice versa.
- Two types of symmetries: \textbf{with} and \textbf{without} fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let \(s_{AB}, s_{BC}, s_{AC} \) be the symmetries swapping the corresponding vertices. Let \(c \) be the symmetry \(A \rightarrow B \rightarrow C \rightarrow A \).
- What are their \textbf{orders}, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of \(s_{AB}, s_{BC} \).
Symmetries of a triangle correspond to permutations of vertices A, B, C, and vice versa.

Two types of symmetries: **with** and **without** fixed points.

Symmetries can be composed (i.e. applied one after another).

Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.

What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?

Express all symmetries as compositions of s_{AB}, s_{BC}.

Can you express any symmetry as a composition of s_{AB} and c?
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: **with** and **without** fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?
- Is such an expression unique?
Symmetries of a triangle

- Symmetries of the triangle correspond to permutations of vertices A, B, C, and vice versa.
- Two types of symmetries: **with** and **without** fixed points.
- Symmetries can be composed (i.e. applied one after another).
- Let s_{AB}, s_{BC}, s_{AC} be the symmetries swapping the corresponding vertices. Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow A$.
- What are their **orders**, i.e. the number of times you need to compose the symmetry with itself to get the identity symmetry?
- Express all symmetries as compositions of s_{AB}, s_{BC}.
- Can you express any symmetry as a composition of s_{AB} and c?
- Is such an expression unique?
- Do symmetries s_{AB}, s_{BC} commute?
Can any permutation of vertices be realized as a symmetry of a square?
Symmetries of a square

Can any permutation of vertices be realized as a symmetry of square?

What are the symmetries fixing a point?
Symmetries of a square

- Can any permutation of vertices be realized as a symmetry of square?
- What are the symmetries fixing a point?
- What are some symmetries of order 2 and 4?
Symmetries of a square

- Can any permutation of vertices be realized as a symmetry of square?
- What are the symmetries fixing a point?
- What are some symmetries of order 2 and 4?
- Which symmetries reverse orientation of vertices, and which do not?
Let c be the symmetry $A \to B \to C \to D \to A$.

Exercise: can you express s_h, s_{d1} and s_{d2} using c and s_v?
Let c be the symmetry $A \to B \to C \to D \to A$.
s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
s_{d1} be the reflection $B \leftrightarrow D$;
s_{d2} be the reflection $A \leftrightarrow C$.

What is the set of symmetries of the square?

Do s_h and s_v commute?

Exercise: can you express s_h, s_{d1} and s_{d2} using c and s_v?
Let \(c \) be the symmetry \(A \to B \to C \to D \to A \).

- \(s_v \) be the reflection \(A \leftrightarrow B, \ C \leftrightarrow D \);
- \(s_h \) be the reflection \(A \leftrightarrow D, \ B \leftrightarrow C \);
- \(s_{d1} \) be the reflection \(B \leftrightarrow D \);
- \(s_{d2} \) be the reflection \(A \leftrightarrow C \).

What is the set of symmetries of the square?
Let c be the symmetry $A \to B \to C \to D \to A$.
s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
s_{d1} be the reflection $B \leftrightarrow D$;
s_{d2} be the reflection $A \leftrightarrow C$.
What is the set of symmetries of the square?
Do s_h and s_v commute?
Let c be the symmetry $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$.
s_v be the reflection $A \leftrightarrow B$, $C \leftrightarrow D$;
s_h be the reflection $A \leftrightarrow D$, $B \leftrightarrow C$;
s_{d1} be the reflection $B \leftrightarrow D$;
s_{d2} be the reflection $A \leftrightarrow C$.

What is the set of symmetries of the square?
Do s_h and s_v commute?

Exercise: can you express s_h, s_{d1} and s_{d2} using c and s_v?
Suppose you have a mattress.
Suppose you have a mattress.
Suppose you have a mattress.

You want to make a flipping schedule to prevent your magic mattress from becoming a sagging mattress.
Sagging mattress

Let’s agree, it looks bad (and probably feels not much better).
Mattress moves

- There are 4 positions of the mattress you can use it in.
There are 4 positions of the mattress you can use it in.
You can achieve all of them by using the following flips:

- I
- R
- P
- Y
There are 4 positions of the mattress you can use it in. You can achieve all of them by using the following flips:

You would like to have a single rule of flipping that you can use to achieve every possible mattress position.
There are 4 positions of the mattress you can use it in.
You can achieve all of them by using the following flips:

$$\begin{array}{ccc}
I & R & P \\
Y & & \\
\end{array}$$

You would like to have a single rule of flipping that you can use to achieve every possible mattress position.
Write down the multiplication table for I, R, P, Y.
There are 4 positions of the mattress you can use it in.
You can achieve all of them by using the following flips:

You would like to have a single rule of flipping that you can use to achieve every possible mattress position.
Write down the multiplication table for I, R, P, Y.
Can you get the desired schedule?
Symmetries of a “thing” can be composed ("multiplied").
Symmetries of a “thing” can be composed (“multiplied”).

The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.
Symmetries of a “thing” can be composed (“multiplied”).

The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.

Symmetries under multiplication form a non-trivial (interesting!) structure.
Symmetries of a “thing” can be composed (“multiplied”).

The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.

Symmetries under multiplication form a non-trivial (interesting!) structure.

Not all symmetries commute.
Symmetries of a “thing” can be composed (“multiplied”).

The set of symmetries is closed under composition, identity symmetry is in it, and every symmetry can be inverted.

Symmetries under multiplication form a non-trivial (interesting!) structure.

Not all symmetries commute.

Often the set of symmetries (which can be big!) can be expressed in terms of a very few symmetries, which “generate” this set.
Definition of group of transformation

Definition

Let X be a set, and let G be a subset of the set $Bij(X)$ of all bijections $X \rightarrow X$. One says G is a **group** if

1. G is closed under composition;
2. $id \in G$;
3. if $g \in G$, then $g^{-1} \in G$.

Example

Symmetries of a triangle, a square and a mattress form a group.
Symmetric group

Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

Is G a group?

How many elements does it have?

Definition

The number of elements in a group G is called its order.

For $1 \leq i < j \leq n$ denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.

If $j = i + 1$, the transposition (ij) is called a transposition of neighbors.

Prove that any permutation is a composition of transpositions of neighbors.
Symmetric group

Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
Symmetric group

Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
- How many elements does it have?

Definition
The number of elements in a group G is called its **order**.

For $1 \leq i < j \leq n$ denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called a **transposition**.

If $j = i + 1$, the transposition (ij) is called a **transposition of neighbors**.

Prove that any permutation is a composition of transpositions of neighbors.
Symmetric group

Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its order.
Take $X = \{1, \ldots, n\}$, and take $G = \text{Bij}(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

- For $1 \leq i < j \leq n$ denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called **transposition**.
Symmetric group

Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its order.

- For $1 \leq i < j \leq n$ denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.
- If $j = i + 1$, the transposition (ij) is called a transposition of neighbors.
Take $X = \{1, \ldots, n\}$, and take $G = Bij(X)$ to be the set of all bijections from X to X. This group is usually denoted by S_n.

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its *order*.

- For $1 \leq i < j \leq n$ denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called *transposition*.
- If $j = i + 1$, the transposition (ij) is called a *transposition of neighbors*.
- Prove that any permutation is a composition of transpositions of neighbors.
It is convenient to denote permutations by

\[
\sigma = \begin{pmatrix}
1 & 2 & 3 & \ldots & n \\
\sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n)
\end{pmatrix}
\]

or simply by

\[
\sigma = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \ \sigma(n))
\]
It is convenient to denote permutations by

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & \ldots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n) \end{array} \right)$$

or simply by

$$\sigma = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \ \sigma(n))$$

Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{array} \right), \quad \sigma_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{array} \right)$$
It is convenient to denote permutations by

\[\sigma = \begin{pmatrix} 1 & 2 & 3 & \ldots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n) \end{pmatrix} \]

or simply by

\[\sigma = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \ \sigma(n)) \]

- Find composition \(\sigma_2 \circ \sigma_1 \) of two permutations

\[\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix} \]

- Find the inverses of \(\sigma_1 \), \(\sigma_2 \) and \(\sigma_2 \circ \sigma_1 \).
It is convenient to denote permutations by

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & \ldots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n) \end{array} \right)$$

or simply by

$$\sigma = (\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \ \sigma(n))$$

- Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{array} \right), \ \sigma_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{array} \right)$$

- Find the inverses of σ_1, σ_2 and $\sigma_2 \circ \sigma_1$.

- Verify that $(\sigma_2 \circ \sigma_1)^{-1} = \sigma_1^{-1} \circ \sigma_2^{-1}$.
Sign of a permutation

Definition

For $\sigma \in S_n$ define $\text{inv}(\sigma)$ to be the number of pairs (ij) such that $i < j$ but $\sigma(i) > \sigma(j)$. This number $\text{inv}(\sigma)$ is called the **number of inversions** of σ.

Define the **sign** of σ to be $\text{sgn}(\sigma) = (-1)^{\text{inv}(\sigma)}$.

What is the sign of $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$?

Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $\text{sgn}(\sigma)$ is $(-1)^N$.

Prove that for two permutations σ, τ we have $\text{sgn}(\sigma \circ \tau) = \text{sgn}(\sigma) \text{sgn}(\tau)$.
Definition

For $\sigma \in S_n$ define $\text{inv}(\sigma)$ to be the number of pairs (ij) such that $i < j$ but $\sigma(i) > \sigma(j)$. This number $\text{inv}(\sigma)$ is called the number of inversions of σ.

- Define the sign of σ to be $\text{sgn}(\sigma) = (-1)^{\text{inv}(\sigma)}$.

What is the sign of $\sigma = (1\ 2\ 3\ 4\ 5\ 6 \ 4\ 3\ 1\ 6\ 5\ 2)$?

Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $\text{sgn}(\sigma)$ is $(-1)^N$.

Prove that for two permutations σ, τ we have $\text{sgn}(\sigma \circ \tau) = \text{sgn}(\sigma) \text{sgn}(\tau)$.
Sign of a permutation

Definition

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (ij) such that $i < j$ but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the number of inversions of σ.

- Define the **sign** of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
Sign of a permutation

Definition

For $\sigma \in S_n$ define $\text{inv}(\sigma)$ to be the number of pairs (ij) such that $i < j$ but $\sigma(i) > \sigma(j)$. This number $\text{inv}(\sigma)$ is called the **number of inversions** of σ.

- Define the **sign** of σ to be $\text{sgn}(\sigma) = (-1)^{\text{inv}(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $\text{sgn}(\sigma)$ is $(-1)^N$.
Sign of a permutation

Definition

For $\sigma \in S_n$ define $\text{inv}(\sigma)$ to be the number of pairs (ij) such that $i < j$ but $\sigma(i) > \sigma(j)$. This number $\text{inv}(\sigma)$ is called the **number of inversions** of σ.

- Define the **sign** of σ to be $\text{sgn}(\sigma) = (-1)^{\text{inv}(\sigma)}$.

- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?

- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $\text{sgn}(\sigma)$ is $(-1)^N$.

- Prove that for two permutations σ, τ we have $\text{sgn}(\sigma \circ \tau) = \text{sgn}(\sigma)\text{sgn}(\tau)$.

Sasha Patotski (Cornell University) Transformations November 3, 2015 12 / 12