Vector fields on the plane

Sasha Patotski

Cornell University

ap744@cornell.edu

December 15, 2014
Vector fields

Definition
Suppose at each point of the plane \mathbb{R}^2 there is given a vector, so that the coordinates of the vector vary continuously with the point. Then we say we are given a vector field on \mathbb{R}^2.

Often convenient to give vector field in the form $f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y}$. This means that at any point (x, y) we are given the vector with coordinates $(f(x, y), g(x, y))$.

Definition
Points with the zero vector assigned are called singular. We will always assume that our vector fields have finitely many singular points.
Definition

Suppose we are given a vector field on \mathbb{R}^2, and a non-self intersecting **oriented** curve C with no singular points on it.
Definition

- Suppose we are given a vector field on \mathbb{R}^2, and a non-self intersecting **oriented** curve C with no singular points on it.
- At any point $x \in C$ dilate the vector v_x at x to a vector \tilde{v}_x at some fixed point on the plane.

This total number of rotations is called the **index** of C, denoted $i(C)$.

Sasha Patotski (Cornell University)
Index of a curve

Definition

- Suppose we are given a vector field on \mathbb{R}^2, and a non-self intersecting oriented curve C with no singular points on it.
- At any point $x \in C$ dilate the vector v_x at x to a vector \tilde{v}_x at some fixed point on the plane.
- When x goes along C, vector \tilde{v}_x will rotate. Count the total number of rotations, clock-wise ones counted with “−” sign and counter-clock-wise with the “+” sign.
Definition

- Suppose we are given a vector field on \mathbb{R}^2, and a non-self intersecting **oriented** curve C with no singular points on it.
- At any point $x \in C$ dilate the vector v_x at x to a vector \tilde{v}_x at some fixed point on the plane.
- When x goes along C, vector \tilde{v}_x will rotate. Count the total number of rotations, clock-wise ones counted with “−” sign and counter-clock-wise with the “+” sign.
- This **total number** of rotations is called the **index** of C, denoted $i(C)$.

Index of a singular point

Definition

Suppose $z \in \mathbb{R}^2$ is a singular point. Take a closed curve C around z which does not contain any other singular points. Then $i(C)$ is called **index of** z and is denoted by $i(z)$.

Notice: this definition makes sense!

Exercise: compute indices of singular points of the fields below.
We can think of a vector field as defining velocities of each point. So every point is moving along a trajectory, and so the vector field is a field of velocities of the points moving along the trajectories.
We can think of a vector field as defining velocities of each point. So every point is moving along a trajectory, and so the vector field is a field of velocities of the points moving along the trajectories.

Exercise: compute indices of the following vector fields.
Theorem

Suppose we have a vector field on \mathbb{R}^2 and a “nice” curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.
Suppose we have a vector field on \mathbb{R}^2 and a “nice” curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.

Proof:

![Diagram of a vector field and a curve C]
Index theorem

Theorem

Suppose we have a vector field on \mathbb{R}^2 and a “nice” curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.

Proof:
Very important corollary

Corollary

If index of a closed curve is not 0, then there is a singular point inside.
Corollary

If index of a closed curve is not 0, then there is a singular point inside.

Application:

Theorem

Let \(f : D \to D \) be a continuous map from a disk to itself, such that each point of \(S^1 = \partial D \) is mapped to itself. Then there exists a point \(x \in D \) mapping to the center \(O \) of \(D \).
Theorem

Let \(f : D \rightarrow \mathbb{R}^2 \) be a continuous map from a disk to itself, such that each point of \(S^1 = \partial D \) is mapped to itself. Then there exists a point \(x \in D \) mapping to the center \(O \) of \(D \).

Proof:
Define a vector field on \(D \subset \mathbb{R}^2 \) by \(v_x = f(x) \). On the \(S^1 \subset D \) it will be just \(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \). Index of \(S^1 \) is 1 \(\neq 0 \), so there is a singular point inside. This is what we wanted.
Theorem

Let \(f : D \rightarrow \mathbb{R}^2 \) be a continuous map from a disk to itself, such that each point of \(S^1 = \partial D \) is mapped to itself. Then there exists a point \(x \in D \) mapping to the center \(O \) of \(D \).

Proof:

Define a vector field on \(D \subset \mathbb{R}^2 \) by \(\nu_x = \overline{f(x)} \).
Theorem

Let \(f : D \to \mathbb{R}^2 \) be a continuous map from a disk to itself, such that each point of \(S^1 = \partial D \) is mapped to itself. Then there exists a point \(x \in D \) mapping to the center \(O \) of \(D \).

Proof:

Define a vector field on \(D \subset \mathbb{R}^2 \) by \(v_x = \overline{f(x)} \).

On the \(S^1 \subset D \) it will be just \(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \).
Theorem

Let $f : D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:
Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = f(x)$.

On the $S^1 \subset D$ it will be just $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Index of S^1 is $1 \neq 0$, so there is a singular point inside.
Theorem

Let $f : D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:
Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = \overline{f(x)}$.
On the $S^1 \subset D$ it will be just $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.
Index of S^1 is $1 \neq 0$, so there is a singular point inside.
This is what we wanted.
Theorem

Any polynomial \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) with complex coefficients has a complex root.
Fundamental theorem of algebra

Theorem

Any polynomial \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) with complex coefficients has a complex root.

Proof:

Consider two vector fields \(v_z = z^n \) and \(w_z = P(z) \).

Let's prove that on a circle \(\{ z \in \mathbb{C} \mid ||z|| = R \} \) for big enough \(R \) holds inequality \(|w_z - v_z| < |v_z| \).

If \(a = \max \{|a_0|, \ldots, |a_{n-1}|\} \), then (for \(R > 1 \))

\[
|w_z - v_z| = |a_{n-1}z^{n-1} + \cdots + a_0| \leq |a_{n-1}|R^{n-1} + \cdots + |a_0| \leq naR^{n-1}.
\]

Since \(|v_z| = R^n \) on this circle, then \(|w_z - v_z| < |v_z| \) for \(R > na + 1 \).

So vectors \(v_z \) and \(w_z \) can't point in opposite directions.
Theorem

Any polynomial \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) with complex coefficients has a complex root.

Proof:
Consider two vector fields \(v_z = z^n \) and \(w_z = P(z) \).
Let’s prove that on a circle \(\{ z \in \mathbb{C} | |z| = R \} \) for big enough \(R \) holds inequality \(|w_z - v_z| < |v_z| \).
Theorem

Any polynomial \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) with complex coefficients has a complex root.

Proof:
Consider two vector fields \(v_z = z^n \) and \(w_z = P(z) \).
Let’s prove that on a circle \(\{ z \in \mathbb{C} \mid |z| = R \} \) for big enough \(R \) holds inequality \(|w_z - v_z| < |v_z| \).
If \(a = \max\{|a_0|, \ldots, |a_{n-1}|\} \), then (for \(R > 1 \))
\[
|w_z - v_z| = |a_{n-1}z^{n-1} + \cdots + a_0| \leq |a_{n-1}|R^{n-1} + \cdots + |a_n| \leq naR^{n-1}.
\]
Fundamental theorem of algebra

Theorem

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Let's prove that on a circle $\{z \in \mathbb{C} \mid |z| = R\}$ for big enough R holds inequality $|w_z - v_z| < |v_z|$.

If $a = \max\{|a_0|, \ldots, |a_{n-1}|\}$, then (for $R > 1$)

$|w_z - v_z| = |a_{n-1}z^{n-1} + \cdots + a_0| \leq |a_{n-1}|R^{n-1} + \cdots + |a_n| \leq naR^{n-1}$.

Since $|v_z| = R^n$ on this circle, then $|w_z - v_z| < |v_z|$ for $R > na + 1$.
Theorem

Any polynomial \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) with complex coefficients has a complex root.

Proof:
Consider two vector fields \(v_z = z^n \) and \(w_z = P(z) \).

Let’s prove that on a circle \(\{ z \in \mathbb{C} \mid |z| = R \} \) for big enough \(R \) holds inequality \(|w_z - v_z| < |v_z| \).

If \(a = \max\{|a_0|, \ldots, |a_{n-1}|\} \), then (for \(R > 1 \))
\[
|w_z - v_z| = |a_{n-1}z^{n-1} + \cdots + a_0| \leq |a_{n-1}|R^{n-1} + \cdots + |a_n| \leq naR^{n-1}.
\]

Since \(|v_z| = R^n \) on this circle, then \(|w_z - v_z| < |v_z| \) for \(R > na + 1 \).

So vectors \(v_z \) and \(w_z \) can’t point in opposite directions.
Lemma

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

Proof: Any complex number can be written in the form $z = |z| e^{i\phi}$. Thus can write v_z as $v_z = |z| n e^{i\phi}$. When ϕ goes from 0 to 2π, $n\phi$ goes from 0 to $2\pi n$. Done.
Lemma

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

Proof:
Any complex number can be written in the form $z = |z| e^{i\varphi}$.
Lemma

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

Proof:
Any complex number can be written in the form $z = |z| e^{i\varphi}$. Thus can write v_z as $v_z = |z|^n e^{in\varphi}$.
Lemma

Index of the origin \(0 \in \mathbb{C}\) with respect to the vector field \(v_z = z^n\) equals \(n\).

Proof:

Any complex number can be written in the form \(z = |z|e^{i\varphi}\).

Thus can write \(v_z\) as \(v_z = |z|^n e^{in\varphi}\).

When \(\varphi\) goes from 0 to \(2\pi\), \(n\varphi\) goes from 0 to \(2\pi n\). Done.
Vectors v_z and w_z can’t point in opposite directions on a large enough circle.
Vectors \(v_z \) and \(w_z \) can’t point in opposite directions on a large enough circle.

So indices of the circle \(C = \{ z \in \mathbb{C} \mid |z| = R \} \) w.r.t. \(v \) and \(w \) are the same.
Vectors v_z and w_z can’t point in opposite directions on a large enough circle.

So indices of the circle $C = \{ z \in \mathbb{C} \mid |z| = R \}$ w.r.t. v and w are the same.

Lemma above gives that index of C w.r.t. v is $n \neq 0$.

So w has a singular point inside C, i.e. the polynomial $P(z)$ has a root inside C.
Vectors v_z and w_z can’t point in opposite directions on a large enough circle.

So indices of the circle $C = \{ z \in \mathbb{C} \mid |z| = R \}$ w.r.t. v and w are the same.

Lemma above gives that index of C w.r.t. v is $n \neq 0$.

So w has a singular point inside C, i.e. the polynomial $P(z)$ has a root inside C.