Euler characteristic. Orientatibility

Sasha Patotski

Cornell University

ap744@cornell.edu

November 30, 2014
Theorem

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:
Theorem

Suppose \(\Sigma \) is a surface, and \(G \) is an embedded graph. Then the Euler characteristic \(\chi(\Sigma) := V - E + F \) is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.
Theorem

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.

Euler characteristic stays the same.
Theorem

Suppose Σ is a surface, and G is an embedded graph. Then the Euler characteristic $\chi(\Sigma) := V - E + F$ is correctly defined.

Sketch of a proof:

Any polygon can be triangulated.
Euler characteristic stays the same.
Euler characteristic is invariant under barycentric subdivision (refinement).
Theorem

Suppose \(\Sigma \) is a surface, and \(G \) is an embedded graph. Then the Euler characteristic \(\chi(\Sigma) := V - E + F \) is correctly defined.

Sketch of a proof:

- Any polygon can be triangulated.
- Euler characteristic stays the same.
- Euler characteristic is invariant under barycentric subdivision (refinement).

Euler characteristic is invariant under **coarsening**.
A coarsening of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2. This would finish the proof.

Exercise: compute Euler characteristic of $\mathbb{R}P^2$, K, T^2, M^2.
A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.
Coarsening

Definition

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2.

Exercise: compute Euler characteristic of $\mathbb{R}P^2$, K^2, T^2, M^2.

Sasha Patotski (Cornell University)
A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2.

This would finish the proof.
Coarsening

Definition

A **coarsening** of a triangulation T of Σ is 2-cell decomposition of Σ in which each 2-cell is a union of 2-cells from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a 2-cell decomposition, which is coarsening of some refinement of T_1 and is approximating T_2.

This would finish the proof.

Exercise: compute Euler characteristic of $\mathbb{R}P^2$, K^2, T^2, M^2.

Sasha Patotski (Cornell University)
Attaching a Möbius strip

Attaching a handle:

![Diagram](image-url)
Attaching a Möbius strip

Attaching a handle:

Attaching a Möbius band:
Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?
Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?

If Σ is Σ' with attached Möbius band, then

$$\chi(\Sigma) = \chi(\Sigma') + 1$$
Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?

If Σ is Σ' with attached Möbius band, then

$$\chi(\Sigma) = \chi(\Sigma') + 1$$

If Σ is Σ'' with attached handle, then

$$\chi(\Sigma) = \chi(\Sigma'') + 2$$
Definition

A **triangulation** of a surface Σ is an embedding of a graph G into Σ such that all faces are triangles.

Definition

A triangulation is **orientable** if all faces can be oriented in a **coherent** way:

![Diagram showing incoherent and coherent orientations]

Definition

Similarly for any 2-cell decomposition of Σ.
Definition

Surface Σ is called **orientable** if there exists orientable triangulation of Σ.

Theorem

The following are equivalent:

1. Σ is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.
Definition

Surface Σ is called **orientable** if there exists orientable triangulation of Σ.

Theorem

The following are equivalent:

1. Σ is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.
Theorem

The following are equivalent:

1. Σ is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.

“Proof:”

Easy to see 2 \iff 3 and 2 \Rightarrow 1.

Orientability is invariant under barycentric subdivision.
Orientability is invariant under coarsening.
Theorem

The following are equivalent:

1. Σ is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.

“Proof:”

Easy to see $2 \iff 3$ and $2 \implies 1$.
The following are equivalent:

1. Σ is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.

“Proof:”

Easy to see $2 \iff 3$ and $2 \implies 1$.
Orientability is invariant under barycentric subdivision.
Theorem

The following are equivalent:

1. \(\Sigma \) is orientable;
2. any triangulation is orientable;
3. any 2-cell decomposition is orientable.

“Proof:”

Easy to see 2 \(\iff \) 3 and 2 \(\implies \) 1.

Orientability is invariant under barycentric subdivision.

Orientability is invariant under coarsening.
Which of the following surfaces are orientable?
Lemma about attaching

Lemma

Sphere with one handle and one Möbius band is homeomorphic to a sphere with 3 Möbius bands.

Proof:

(a) (b)