Embedded graphs

Sasha Patotski

Cornell University

ap744@cornell.edu

November 24, 2014
Embed K_6 and K_7 into a torus.
2-cell embeddings of graphs

Definition

A 2-cell embedding of a graph G into a surface Σ is such an embedding, so that after you remove the graph, the resulting surface will be a disjoint union of discs.

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V - E + F = 2 - 2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.
Theorem

For any graph G there exists a number g so that G can be drawn on a sphere with g handles.

Definition

Define $\gamma(G)$ — minimal number g, so that G can be embedded into a sphere of genus g.

So $\gamma(K_5) = \gamma(K_{3,3}) = 1$, $\gamma(K_8) \geq 2$, $\gamma(tree) =$?
Theorem

We have $\gamma(K_n) \geq \frac{(n-3)(n-4)}{12}$.

More generally, for polyhedral graphs, $\gamma(G) \geq 1 - \frac{V}{2} + \frac{E}{6}$.

Corollary: $\gamma(K_8) \geq 2$.
Theorem

We have \(\gamma(K_n) \geq \frac{(n-3)(n-4)}{12} \).

More generally, for polyhedral graphs, \(\gamma(G) \geq 1 - \frac{V}{2} + \frac{E}{6} \).

Follows from Euler formula and \(F \leq \frac{2}{3}E \).
Theorem

We have \(\gamma(K_n) \geq \frac{(n-3)(n-4)}{12} \).

More generally, for polyhedral graphs, \(\gamma(G) \geq 1 - \frac{V}{2} + \frac{E}{6} \).

Follows from Euler formula and \(F \leq \frac{2}{3}E \).

Corollary: \(\gamma(K_8) \geq 2 \).
Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V - E + F = 2 - 2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.

Notice: For a given g, any 2-cell decomposition of sphere with g handles has the same number $V - E + F$.
Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V - E + F = 2 - 2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.

Notice: For a given g, any 2-cell decomposition of sphere with g handles has the same number $V - E + F$.

Notice: 2-cell decomposition makes sense for any surface!
Euler characteristic

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V - E + F = 2 - 2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.

Notice: For a given g, any 2-cell decomposition of sphere with g handles has the same number $V - E + F$.

Notice: 2-cell decomposition makes sense for any surface!

Definition

The number $V - E + F$ is called Euler characteristic.
Euler characteristic

Theorem

Suppose graph G is 2-cell embedded into a sphere with g handles. Then

$$V - E + F = 2 - 2g,$$

where V is the number of vertices, E is the number of edges and F is the number of faces.

Notice: For a given g, any 2-cell decomposition of sphere with g handles has the same number $V - E + F$.

Notice: 2-cell decomposition makes sense for any surface!

Definition

The number $V - E + F$ is called Euler characteristic.

So far we know that it is correctly defined for spheres with handles.
Theorem

The Euler characteristic is correctly defined for any surface.
Theorem

The Euler characteristic is correctly defined for any surface.

Any polygon can be triangulated.
Theorem

The Euler characteristic is correctly defined for any surface.

Any polygon can be triangulated.
Euler characteristic stays the same.
Theorem

The Euler characteristic is correctly defined for any surface.

Any polygon can be triangulated.

Euler characteristic stays the same.

Euler characteristic is invariant under barycentric subdivision (refinement).
Theorem

The Euler characteristic is correctly defined for any surface.

Any polygon can be triangulated.
Euler characteristic stays the same.
Euler characteristic is invariant under barycentric subdivision (refinement).

Euler characteristic is invariant under coarsening.
Coarsening

Definition
A map of a surface S is a partition of S into properly attached polygons. A coarsening of a triangulation T of S is a map of S in which each polygon is the union of 2-simplices from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a map M, which is coarsening of some refinement of T_1 and is approximating T_2. This would finish the proof.

Exercise: compute Euler characteristic of $R P^2$, K^2, T_2, S^2.

Sasha Patotski (Cornell University)
Coarsening

Definition

A **map** of a surface S is a partition of S into properly attached polygons. A **coarsening** of a triangulation T of S is a map of S in which each polygon is the union of 2-simplices from T.

Euler characteristic is invariant under coarsening.
A **map** of a surface S is a partition of S into properly attached polygons. A **coarsening** of a triangulation T of S is a map of S in which each polygon is the union of 2-simplices from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a map M, which is coarsening of some refinement of T_1 and is approximating T_2.

Exercise: compute Euler characteristic of $\mathbb{R}P^2$, K^2, T^2, S^2.

Sasha Patotski (Cornell University)
Coarsening

Definition

A **map** of a surface \(S \) is a partition of \(S \) into properly attached polygons. A **coarsening** of a triangulation \(T \) of \(S \) is a map of \(S \) in which each polygon is the union of 2-simplices from \(T \).

Euler characteristic is invariant under coarsening.

Idea: have two triangulations \(T_1 \) and \(T_2 \). We want to find a map \(M \), which is coarsening of some refinement of \(T_1 \) and is approximating \(T_2 \). This would finish the proof.
Coarsening

Definition

A map of a surface S is a partition of S into properly attached polygons. A coarsening of a triangulation T of S is a map of S in which each polygon is the union of 2-simplices from T.

Euler characteristic is invariant under coarsening.

Idea: have two triangulations T_1 and T_2. We want to find a map M, which is coarsening of some refinement of T_1 and is approximating T_2. This would finish the proof.

Exercise: compute Euler characteristic of \mathbb{RP}^2, K^2, T^2, S^2.
Attaching a Möbius strip

Attaching a handle:

![Diagram of attaching a handle to a Möbius strip]
Attaching a Möbius strip

Attaching a handle:

![Diagram of attaching a handle]

Attaching a Möbius band:

![Diagram of attaching a Möbius band]
Lemma about attaching

Lemma

Sphere with one handle and one Möbius band is homeomorphic to a sphere with 3 Möbius bands.

Proof:

![Diagram](image)

(a) ![Diagram](image)

(b)
Question: How does $\chi(\Sigma)$ change when attaching a handle? When attaching a Möbius strip?