Recall that the dot product of \(n \)-vectors
\[
\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
\]
is (the real number) \(\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + \cdots + u_nv_n \). From this definition one can see that

1. \(\mathbf{u} \cdot \mathbf{u} \geq 0 \), and \(\mathbf{u} \cdot \mathbf{u} = 0 \) if and only if \(\mathbf{u} = \mathbf{0} \);
2. \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \);
3. \(\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a(\mathbf{u} \cdot \mathbf{v}) + b(\mathbf{u} \cdot \mathbf{w}) \).

These three properties will serve for the definition of inner product of vectors in arbitrary vector space. For this reason it is convenient to write \(\mathbf{u} \cdot \mathbf{v} = (\mathbf{u}, \mathbf{v}) \) (simply another notation).

Let’s see some consequences of (1)−(3). Recall that the length of vector \(\mathbf{u} \) in \(\mathbb{R}^n \) is \(\| \mathbf{u} \| = \sqrt{(\mathbf{u}, \mathbf{u})} \). For instance, the length of the vector \(\begin{bmatrix} 3 \\ 4 \end{bmatrix} \) in \(\mathbb{R}^2 \) is \(\sqrt{3^2 + 4^2} = \sqrt{25} = 5 \).

4. Cauchy-Bunyakovsky-Schwarz inequality (CBS inequality):
\[
| (\mathbf{u}, \mathbf{v}) | \leq \| \mathbf{u} \| \| \mathbf{v} \| .
\]

Let’s prove this. We have for any number \(r \):
\[
0 \leq (r\mathbf{u} + \mathbf{v}, r\mathbf{u} + \mathbf{v}) = (\mathbf{u}, \mathbf{u})r^2 + 2(\mathbf{u}, \mathbf{v})r + (\mathbf{v}, \mathbf{v}) = q(r).
\]
The case \((\mathbf{u}, \mathbf{u}) = 0\) is obvious, because then \(\mathbf{u} = \mathbf{0} \) and CBS holds: \(0 \leq 0 \). So, suppose \(\mathbf{u} \neq 0 \). Then \(q(r) \) is a quadratic polynomial with nonpositive discriminant (otherwise it would have two real roots \(a \) and \(b \), and for all \(r \) between \(a \) and \(b \) it would be \(q(r) < 0 \), which is contradictory). The discriminant of \(q(r) \) is \(4(\mathbf{u}, \mathbf{v})^2 - 4(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v}) \), and it is \(\leq 0 \) if and only if \((\mathbf{u}, \mathbf{v})^2 \leq (\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v}) \). Taking the square root, we obtain CBS inequality.

Take, for example, \(\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix} \). Then \((\mathbf{u}, \mathbf{v}) = 1, \| \mathbf{u} \| = 1, \| \mathbf{v} \| = 2 \).

Clearly, \(1 = | (\mathbf{u}, \mathbf{v}) | \leq \| \mathbf{u} \| \| \mathbf{v} \| = 2 \).

By CBS inequality,
\[
-1 \leq \frac{(\mathbf{u}, \mathbf{v})}{\| \mathbf{u} \| \| \mathbf{v} \|} \leq 1.
\]

Then there is a unique real number \(0 \leq \varphi \leq \pi \) such that \(\cos \varphi = \frac{(\mathbf{u}, \mathbf{v})}{\| \mathbf{u} \| \| \mathbf{v} \|} \). This number \(\varphi \) is called the angle between \(\mathbf{u} \) and \(\mathbf{v} \). In the above example \(\cos \varphi = \frac{1}{2} \), so \(\varphi = 60^\circ \).

Another example: take \(\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \). Then \((\mathbf{u}, \mathbf{v}) = 0 \) and \(\cos \varphi = 0 \).

Hence \(\varphi = 90^\circ \). This suggests the definition: vectors \(\mathbf{u} \) and \(\mathbf{v} \) are called orthogonal, if \((\mathbf{u}, \mathbf{v}) = 0 \).

5. Triangle inequality:
\[
\| \mathbf{u} + \mathbf{v} \| \leq \| \mathbf{u} \| + \| \mathbf{v} \| .
\]
Orthogonal set of nonzero vectors

If a basis consists of a set of vectors that are orthonormal, the coefficients can be found rather easily. In particular, if \(u = (u_1, u_2, \ldots, u_n) \) is orthonormal, then the orthogonal set forms a basis (why?).

\[\|u\| = 1 \]

An important property of such sets:

\[\|u + v\| \leq \|u\| + \|v\| \]

This means that (6) is true.

\[\|a_1 u_1 + a_2 u_2 + \cdots + a_k u_k\| \leq \|u\| \|a\| \]

To show this, suppose \(a_1 u_1 + a_2 u_2 + \cdots + a_k u_k = 0 \).

Then, for any \(i \):

\[(u_i, a_1 u_1 + a_2 u_2 + \cdots + a_k u_k) = (u_i, 0) = 0. \]

The left-hand side is \(a_i (u_i, u_i) \), by orthogonality. Since \(u_i \neq 0 \) by assumption, \((u_i, u_i) > 0 \). Then \(a_i = 0 \) (for all \(i \)). This means that (6) is true.

In particular, if \(k = n \) (i.e. the number of vectors in the orthogonal set equal the dimension), then the orthogonal set form a basis (why?).

Especially useful are orthogonal sets \(\{u_1, u_2, \ldots, u_k\} \) in which \(\|u_i\| = 1 \). Such sets are called orthonormal. For example, the standard basis in \(\mathbb{R}^n \) is orthonormal. There are many orthonormal bases in \(\mathbb{R}^n \).

Example 1. Verify that

\[u_1 = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \]

is an orthonormal basis in \(\mathbb{R}^3 \).

In general, given a basis \(S = \{u_1, u_2, \ldots, u_n\} \) of \(\mathbb{R}^n \), in order to find the coordinates of a vector \(u \) in this basis, we need to solve an \(n \times n \) linear system. But when \(S \) is orthonormal, the coefficients can be found rather easily.

\[u = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n, \]

where \(a_i = (u, u_i) \).

Indeed, \((u, u) = (a_1 u_1 + a_2 u_2 + \cdots + a_n u_n, u_i) = a_1 (u_1, u_i) + \cdots + a_n (u_n, u_i) = a_i (u_i, u_i) = a_i. \)

Let’s find the coordinates of the vector \(u = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \) in the basis from example 1. We have

\[a_1 = (u, u_1) = 3 \cdot \frac{2}{3} + 4 \cdot \left(-\frac{2}{3}\right) + 5 \cdot \frac{1}{3} = 1, \quad a_2 = (u, u_2) = 0, \quad a_3 = (u, u_3) = 7. \]

In other words,

\[u = u_1 + 7u_3. \]