Here are a few comments I had on HW 6. Note that these comments are not intended to serve as solutions. Comments on how the problem was scored are in purple italics.

Chapter 9

2. There is a short-cut: by Euler’s theorem it is not actually necessary to check whether \(a^4 \equiv 1 \mod 9 \) or whether \(a^5 \equiv 1 \mod 9 \) because \(\varphi(9) = 6 \) and 4 and 5 do not divide 6.

I did not require that people know this for full points since Euler’s theorem comes after these exercises.

8. One general strategy to show this is to show that \(k \) is common multiple of \(d \) and \(e \) if and only if \(a^k \equiv 1 \mod m \) then appeal to minimality.

29. Fermat’s Little Theorem is useful here. *Always be sure to cite the results you use.*

43. Use Euler’s Theorem (Theorem 6) and Proposition 7 noting that \(322 = 20 \times 16 + 2 \).

I only gave full credit here for computing the answer efficiently and otherwise a correct answer received a score of 2 out of 3.

60. One strategy was to use induction to get the result for prime powers then show that if the result holds for \(n = a, b \) such that \((a, b) = 1 \) then it also holds for the product.

Hint for a slick proof: Consider

\[
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}.
\]

Reduce the fractions and group them by (reduced) denominator \(d|n \).

This one was not graded for rigor.
Chapter 11

3. There are 5 such products.

We can't assume abcd is well-defined in this question because that's what we're trying to show.

11. Working in U_{19},

\[
\langle 7 \rangle = \{ [1], [7], [11] \}
\]

\[
\langle 12 \rangle = \langle 8 \rangle = \{ [1], [8], [7], [-1], [-8], [-7] \}
\]

This answer is only unique up to choice of representatives mod 19.