Problem 0

The assumption of equal variances, which was made in Exercise 8.41, is not always tenable. In such a case, the distribution of the statistic is no longer a t. Indeed, there is doubt as to the wisdom of calculating a pooled variance estimate. (This problem, of making inference on means when variances are unequal, is, in general, quite a difficult one. It is known as the Behrens–Fisher Problem.) A natural test to try is the following modification of the two-sample t test: Test

\[H_0: \mu_X = \mu_Y \quad \text{versus} \quad H_1: \mu_X \neq \mu_Y, \]

The exact distribution of \(T' \) is not pleasant, but we can approximate the distribution using Satterthwaite's approximation (Example 7.2.3).

(a) Show that

\[\frac{s_X^2}{n} + \frac{s_Y^2}{m} \sim \chi^2 \quad \text{(approximately)}, \]

where \(\nu \) can be estimated with

\[\nu = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m} \right)^2}{\frac{s_X^4}{n(n-1)} + \frac{s_Y^4}{m(m-1)}}. \]

(b) Argue that the distribution of \(T' \) can be approximated by a \(t \) distribution with \(\nu \) degrees of freedom.

Problem 1. Let \(\mathbf{X} \) be a random vector distributed according to the probability measure \(P^{\theta} \). Suppose that \(\hat{\theta} \) is the M.L.E. of \(\theta \). Define \(U = h(\theta) \) and let \(f_{U}(X) \) denotes the density function of \(X \) in terms of \(U \). Show that the M.L.E. of \(U \) is \(h(\theta) \). (Hence M.L.E. is unaffected by reparametrization.) Assume that \(h \) is a one to one function.

Problem 2. Let \(X_1, \ldots, X_n \) be i.i.d. with density of \(X_1 \) being

\[f(x, \theta) = \frac{1}{\sigma} \exp\left[-(x-u)/\sigma\right] \quad x \geq u \]

where \(\theta = (u, \sigma^2) \), \(u, \sigma^2 \) both unknown \(u \in \mathbb{R} \) and \(\sigma > 0 \).

(a) Find the m.l.e. of \(u \) and \(\sigma^2 \)

(b) Find the m.l.e. of \(P^{\theta}[X_1 > t] \) for \(t > u \).

Problem 3. Let \(X_1, \ldots, X_n \) be a sample (i.e.i.i.d) from a uniform distribution over \([\theta - \frac{1}{2}, \theta + \frac{1}{2}]\). (Note: The distribution has positive density at the end points \(\theta - \frac{1}{2} \) and \(\theta + \frac{1}{2} \)). Show that any \(T \) such that

\[X(n) - \frac{1}{2} \leq T \leq X(1) + \frac{1}{2} \]

is a m.l.e. of \(\theta \), where \(X_{(1)} = \min X_i \) and \(X_{(n)} = \max X_i \).