Liquidity Risk and Trade Impact
Cornell Liquidity Conference, June 2008

Alexandre F. Roch
Center for Applied Mathematics
Cornell University

July 27, 2008
The CJP model - Cetin, Jarrow, Protter (2004)

- $S(t, x)$ is price per share to buy ($x > 0$) or sell ($x < 0$) at time t. Total price to pay for x shares is then $xS(t, x)$. In practice, $S(t, x) = S_t + M_t x$. (See Marcel Blais’ thesis)
The CJP model - Cetin, Jarrow, Protter (2004)

- $S(t, x)$ is price per share to buy ($x > 0$) or sell ($x < 0$) at time t. Total price to pay for x shares is then $xS(t, x)$. In practice, $S(t, x) = S_t + M_t x$. (See Marcel Blais’ thesis)
- $xS(t, x) = S_t x + M_t x^2$. Hence the marginal cost is $S_t + 2M_t x$.
S(t, x) is price per share to buy (x > 0) or sell (x < 0) at time t. Total price to pay for x shares is then xS(t, x). In practice, $S(t, x) = S_t + M_t x$. (See Marcel Blais’ thesis)

$xS(t, x) = S_t x + M_t x^2$. Hence the marginal cost is $S_t + 2M_t x$.

Self-financing strategies (X, Y) satisfy

$$Y_T = Y_0 + \int_0^T X_u - dS_u - \int_0^T M_u d[X]_u.$$

X_t denotes the number of shares held at time t and Y_t the money in the bank account (0 interest).
Figure: Typical order book density for linear model.
Figure: Order book is partly used up.
Figure: Price Impact at time $t + \cdot$
Mathematical Framework

We take the point of view of an “impatient” investor. All the trades are made at the market price $S^0(t,x)$.

Second type of resiliency: damping. In the long run, the effect of past trades on prices decreases: price S^0_t converges to the unaffected price S_t.
Mathematical Framework

- We take the point of view of an “impatient” investor. All the trades are made at the market price $S^0(t, x)$.
- S_t^0 denotes the actual observed marginal price at time t. It depends on the process X up to time t. $S_{t+}^0 = S_t^0 + 2\lambda M_t \Delta X_t$.

Mathematical Framework

- We take the point of view of an “impatient” investor. All the trades are made at the market price \(S^0(t, x) \).
- \(S^0_t \) denotes the actual observed marginal price at time \(t \). It depends on the process \(X \) up to time \(t \). \(S^0_{t+} = S^0_t + 2\lambda M_t \Delta X_t \).
- We denote by \(S_t \) the marginal price (or unaffected price) that would have been observed if not trades had been executed until time \(t \) \((X_s = 0, 0 \leq s \leq t)\).
Mathematical Framework

- We take the point of view of an “impatient” investor. All the trades are made at the market price $S^0(t, x)$.

- S^0_t denotes the actual observed marginal price at time t. It depends on the process X up to time t. $S^0_{t+} = S^0_t + 2\lambda M_t \Delta X_t$.

- We denote by S_t the marginal price (or unaffected price) that would have been observed if not trades had been executed until time t ($X_s = 0$, $0 \leq s \leq t$).

- **Second type of resiliency : damping.** In the long run, the effect of past trades on prices decreases: price S^0_t converges to the unaffected price S_t.
Figure: Typical sample path
Mathematical Framework

- We define the price after impact by

\[S_{t+}^0 = S_t + 2\lambda \int_0^t e^{-\kappa(t-u)} M_u dX_u + 2\lambda \int_0^t e^{-\kappa(t-u)} d[M, X]_u. \]

for any \(t \leq T \).
Mathematical Framework

- We define the price after impact by

\[S_{t+}^0 = S_t + 2\lambda \int_0^t e^{-\kappa(t-u)} M_u dX_u + 2\lambda \int_0^t e^{-\kappa(t-u)} d[M, X]_u. \]

for any \(t \leq T \).

- Let \(\sigma_n : 0 = \tau_0^n \leq \tau_1^n \leq \ldots \leq \tau_{k_n}^n = t \) be a sequence of random partitions tending to the identity and \(\Delta_k^n X = X_{\tau_k^n} - X_{\tau_{k-1}^n} \). A pair \((X_t, Y_t)_{t \geq 0} \) is a self-financing trading strategy (s.f.t.s) if \(X \) is a cadlag process and \(Y \) is an optional process satisfying

\[Y_t = Y_0 - \lim_{n \to \infty} \sum_{k=1}^{k_n} \Delta_k^n X S_0^0(\tau_k^n, \Delta_k^n X). \]

We will always define trading strategies with \(X_{0-} = Y_{0-} = 0 \).
Self-financing Strategies

Theorem 1

Let X be a FV cadlag process and Y an optional process. Define

$$
I_t = \lambda \int_0^t X_u^2 d m_u
$$

$$
L_t = \int_0^t K(t-u) M_u d [X,X]_u + (1-\lambda) M_t X_t^2
$$

with $K(t) = 1 - \lambda e^{-\kappa t}$ and $m_t = e^{-\kappa t} M_t$. If $(X_t, Y_t)_{t \geq 0}$ is a self-financing trading strategy then

$$
Y_T + X_T S_T^0 (\mathbf{-X}_T) = Y_0 + X_0 S_0(X_0) + \int_0^T X_u - d S_u - L_T - I_T
$$

- The case $\lambda = 0$ corresponds to the CJP model. (Full resiliency)
Hypothesis (1): There exists a measure Q equivalent to P such that S is a Q-local martingale and m is a Q-submartingale.
Hypothesis (1): There exists a measure Q equivalent to P such that S is a Q-local martingale and m is a Q-submartingale.

Theorem 2

Under Hypothesis (1) there are no arbitrage opportunities.
No Arbitrage and Equivalent Martingale Measures

- **Hypothesis (1)**: There exists a measure Q equivalent to \mathcal{P} such that S is a Q-local martingale and m is a Q-submartingale.

Theorem 2

Under Hypothesis (1) there are no arbitrage opportunities.

- Profit $= \int_0^T X_u dS_u - \lambda \int_0^t X_u^2 dm_u -$ Liquidity Costs.
The Model

- Under what conditions/model is the market complete?
The Model

- Under what conditions/model is the market complete?
- We define

\[dv_t = \tilde{a}(v_s, s)ds + b_1(v_s, s)dW_{1,s} + b_2(v_s, s)dW_{2,s} \]
\[dm_t = \eta(m_s, s)ds + \xi_1(m_s, s)dW_{1,s} + \xi_2(m_s, s)dW_{2,s} \]

for all \(0 \leq t \leq T \) in which \(\tilde{a}, b, \xi, \eta \ldots \) are Lipschitz functions which ensures the existence of such processes. \(m_t = \exp(-\kappa(T-t))M_t \). \(v_t \) is a component of the stochastic volatility.
The Model

- Under what conditions/model is the market complete?
- We define

\[dv_t = \tilde{a}(v_s, s)ds + b_1(v_s, s)dW_{1,s} + b_2(v_s, s)dW_{2,s} \]
\[dm_t = \eta(m_s, s)ds + \xi_1(m_s, s)dW_{1,s} + \xi_2(m_s, s)dW_{2,s} \]

for all \(0 \leq t \leq T \) in which \(\tilde{a}, b, \xi, \eta \ldots \) are Lipschitz functions which ensures the existence of such processes. \(m_t = \exp(-\kappa(T-t))M_t \).

\(v_t \) is a component of the stochastic volatility.
- Furthermore we will assume that the matrix

\[\Sigma(m_t, v_t, t) = \begin{pmatrix} b_1(v_t, t) & b_2(v_t, t) \\ \xi_1(m_t, t) & \xi_2(m_t, t) \end{pmatrix} \]

is invertible for all \(0 \leq t \leq T \).
Recall that \(S_t \) is the stock price resulting in the actions of all investors in the market except me. The aggregated effect of trading done by investor \(i \) on the stock price is \(2\lambda \int_0^t m_u dX^i_u + 2\lambda [m, X^i]_t \).
Recall that S_t is the stock price resulting in the actions of all investors in the market except me. The aggregated effect of trading done by investor i on the stock price is $2\lambda \int_0^t m_u dX_u^i + 2\lambda [m, X^i]_t$.

We can expect the stock price to be affected by sum over all investors in the market (except me) and some other risk source: $S_T = S_0 + \sum_i 2\lambda \int_0^T m_u dX_u^i + 2\lambda \sum_i [m, X^i]_T + \int_0^T \nu_u S_u dW_u$.
Recall that \(S_t \) is the stock price resulting in the actions of all investors in the market except me. The aggregated effect of trading done by investor \(i \) on the stock price is
\[
2\lambda \int_0^t m_u dX_u + 2\lambda [m, X^i]_t.
\]

We can expect the stock price to be affected by sum over all investors in the market (except me) and some other risk source:
\[
S_T = S_0 + \sum_i 2\lambda \int_0^T m_u dX_u + 2\lambda \sum_i [m, X^i]_T + \int_0^T \nu_u S_u dW_u.
\]

If we assume \(\sum_i dX_t \) is of the form \(S_t dW_t \), the stock process is then given by
\[
dS_t = \mu_t S_t dt + \sum_{i=1}^3 \sigma_i \sigma_t S_t dW_{i,t}
\]
for all \(0 \leq t \leq T \) in which \(\sigma_t = m_t + \nu_t \).
The Volatility Swaps

We add two volatility swaps, denoted $G_{i,t}$ for $i = 1, 2$. To ensure no arbitrage, we assume the existence of an equivalent probability measure Q such that S is martingale, m is submartingale and

$$G_{i,t} = E_Q(\sigma_{T_i} \mid \mathcal{F}_t)$$

for $i = 1, 2$.
The Volatility Swaps

- We add two volatility swaps, denoted $G_{i,t}$ for $i = 1, 2$. To ensure no arbitrage, we assume the existence of an equivalent probability measure Q such that S is martingale, m is submartingale and

$$G_{i,t} = \mathbb{E}_Q(\sigma_{T_i} | \mathcal{F}_t)$$

for $i = 1, 2$.

- $\chi_{i,t}$ will represent the number of shares invested in the swap G_i at time t. We assume that these swaps have liquidity constraints similar to the asset S except that their liquidity is constant.
The Volatility Swaps

- We add two volatility swaps, denoted $G_{i,t}$ for $i = 1, 2$. To ensure no arbitrage, we assume the existence of an equivalent probability measure Q such that S is martingale, m is submartingale and

$$G_{i,t} = E_Q\left(\sigma_{T_i}\mid\mathcal{F}_t\right)$$

for $i = 1, 2$.

- $\chi_{i,t}$ will represent the number of shares invested in the swap G_i at time t. We assume that these swaps have liquidity constraints similar to the asset S except that their liquidity is constant.

- S.f.t.s now satisfy

$$Y_T = Y_0 + \int_0^T X_u dS_u - \lambda \int_0^T X_u^2 dm_u - \int_0^T K(T-u)M_u d[X]_u$$

$$+ \sum_i \int_0^T \chi_{i,u} dG_{i,u} - \sum_i \int_0^T K_i(T-u)N_i d[\chi_i]_u.$$

Here N_i and K_i refer to the liquidity constraints of G_i.

Girsanov’s Theorem

By Girsanov’s theorem, there exists a predictable process θ such that under Q

$$B_t = W_t + \int_0^t \theta_s ds.$$

is a (3-dimensional) Brownian motion.
Girsanov’s Theorem

By Girsanov’s theorem, there exists a predictable process \(\theta \) such that under \(Q \)

\[
B_t = W_t + \int_0^t \theta_s ds.
\]

is a (3-dimensional) Brownian motion.

This essentially means that

\[
(\theta_1, t\sigma_1 + \theta_2, t\sigma_2 + \theta_3, t\sigma_3)\sigma_t = \mu_t \quad \text{and} \quad (\theta_1, t\xi_1 + \theta_2, t\xi_2) \leq \eta(m_t, t).
\]
Girsanov’s Theorem

- By Girsanov’s theorem, there exists a predictable process \(\theta \) such that under \(Q \)

\[
B_t = W_t + \int_0^t \theta_s ds.
\]

is a (3-dimensional) Brownian motion.

- This essentially means that

\[
(\theta_1,t\sigma_1 + \theta_2,t\sigma_2 + \theta_3,t\sigma_3)\sigma_t = \mu_t \quad \text{and} \quad (\theta_1,t\xi_1 + \theta_2,t\xi_2) \leq \eta(m_t,t).
\]

- Let \(\zeta_t = \eta(m_t,t) - (\theta_1,t\xi_1(m_t,t) + \theta_2,t\xi_2(m_t,t)) \) and \(a_t = \tilde{a}(v_t,t) - (\theta_1,t b_1(v_t,t) + \theta_2,t b_2(v_t,t)) \). Then

\[
\begin{align*}
dv_t &= a_t dt + b_1(v_t,t)dB_{1,t} + b_2(v_t,t)dB_{2,t} \\
dm_t &= \zeta_t dt + \xi_1(m_t,t)dB_{1,t} + \xi_2(m_t,t)dB_{2,t} \\
dS_t &= \sum_i \sigma_i \sigma_t S_t dB_{i,t}.
\end{align*}
\]
Approximate Completeness and S.f.t.s.

Recall the definition of self-financing:

\[
Y_T = Y_0 + \int_0^T X_u - dS_u - \lambda \int_0^T X_u^2 - dm_u - \int_0^T K(T - u) M_u d[X]_u \\
+ \sum_i \int_0^T \chi_{i,u} - dG_{i,u} - \sum_i \int_0^T K_i(T - u) N_i d[\chi_i]_u.
\]
Approximate Completeness and S.f.t.s.

Recall the definition of self-financing:

\[Y_T = Y_0 + \int_0^T X_u dS_u - \lambda \int_0^T X_u^2 dm_u - \int_0^T K(T-u)M_u d[X]_u \]
\[+ \sum_i \int_0^T \chi_{i,u} dG_{i,u} - \sum_i \int_0^T K_i(T-u)N_i d[\chi_i]_u. \]

Lemma 1

Fix \(t \) and let \(H_T \in \mathcal{L}^\infty \). Suppose there exist predictable processes \(X \) and \(\chi \) with \(H_T = c + \int_t^T X_u dS_u + \sum_{i=1,2} \int_t^T \chi_{i,u} dG_{i,u} - \lambda \int_t^T X_u^2 dm_u \) for some \(c \in \mathbb{R} \). Then there exists a sequence of s.f.t.s. \((X^n, \chi^n, Y^n) \) with \(X^n \) bounded, continuous and of finite variation such that \(X^n_t = 0 \), \(X^n_T = 0 \), \(\chi^n_t = 0 \), \(\chi^n_T = 0 \) and \(Y^n_T = \mathbb{E}_Q \left(H_T + \lambda \int_t^T (X^n_{u-})^2 m_u \zeta_u du \bigg| \mathcal{F}_t \right) \) for all \(n \) and \(Y^n_T \rightarrow H_T \) in \(\mathcal{L}^2(dQ) \)
Quadratic Growth BSDEs

- For a given payoff H_T, the replication problem boils down to finding processes X, χ and a constant c that satisfy:

$$H_T = c + \int_t^T X_u dS_u + \sum_{i=1,2} \int_t^T \chi_{i,u} dG_{i,u} - \lambda \int_t^T X_u^2 dm_u.$$
Quadratic Growth BSDEs

- For a given payoff H_T, the replication problem boils down to finding processes X, χ and a constant c that satisfy:

$$H_T = c + \int_t^T X_u dS_u + \sum_{i=1,2} \int_t^T \chi_{i,u} dG_{i,u} - \lambda \int_t^T X_u^2 dm_u.$$

- The existence of such a process is given by the existence of a solution to quadratic growth BSDEs:

\[X_t = H - \int_t^T X_s dS_s + \lambda \int_t^T X_s^2 dm_s - \sum_i \int_t^T \chi_{i,s} dG_{i,s} \quad (1) \]

\textbf{Theorem 3}

Let $0 \leq t_0 \leq T$ and $T_1 \neq T_2$. Suppose $\zeta_t = \zeta m_t$ and $a_t = av_t$ for some constants $\zeta \neq a$. For $H \in \mathcal{L}^\infty(\mathcal{F}_T)$, there exists a unique solution $(X_t, \chi_t, Y_t)_{t_0 \leq t \leq T}$ to the following BSDE

$$Y_t = H - \int_t^T X_s dS_s + \lambda \int_t^T X_s^2 dm_s - \sum_i \int_t^T \chi_{i,s} dG_{i,s} \quad (1)$$

for $t_0 \leq t \leq T$.
The claim H has liquidity constraints associated to it: the replicating cost of ϵH is not ϵ times the replicating cost of H.

Let $(X_{\epsilon}, \chi_{\epsilon}, Y_{\epsilon})$ be the solution of BSDE with terminal condition ϵH. Let $H_t(\epsilon)$ be the replicating price per share of ϵ shares of the claim H starting at time t, i.e. $Y_{\epsilon t \epsilon}$. Denote $H_t(0) = \lim_{\epsilon \to 0} H_t(\epsilon) = \lim_{\epsilon \to 0} Y_{\epsilon t \epsilon}$ and $H_t'(0)$ the derivative at zero (we will see that it exists).
The claim H has liquidity constraints associated to it: the replicating cost of ϵH is not ϵ times the replicating cost of H.

Let $(X^\epsilon, \chi^\epsilon, Y^\epsilon)$ be the solution of BSDE with terminal condition ϵH.
The claim H has liquidity constraints associated to it: the replicating cost of ϵH is not ϵ times the replicating cost of H.

Let $(X^\epsilon, \chi^\epsilon, Y^\epsilon)$ be the solution of BSDE with terminal condition ϵH.

Let $H_t(\epsilon)$ be the replicating price per share of ϵ shares of the claim H starting at time t, i.e. $\frac{Y^\epsilon_t}{\epsilon}$.
The claim H has liquidity constraints associated to it: the replicating cost of ϵH is not ϵ times the replicating cost of H.

Let $(X^\epsilon, \chi^\epsilon, Y^\epsilon)$ be the solution of BSDE with terminal condition ϵH.

Let $H_t(\epsilon)$ be the replicating price per share of ϵ shares of the claim H starting at time t, i.e. $\frac{Y^\epsilon_{t \epsilon}}{\epsilon}$.

Denote $H_t(0) = \lim_{\epsilon \to 0} H_t(\epsilon) = \lim_{\epsilon \to 0} \frac{Y^\epsilon_{t \epsilon}}{\epsilon}$ and $H'_t(0)$ the derivative at zero (we will see that it exists).
The BSDE for ϵH can be written in the form:

$$Y_t^\epsilon = \epsilon H + \int_t^T \zeta m_s \lambda(X_s^\epsilon)^2 ds + \sum_i \int_t^T \left(- X_s^\epsilon \sigma_i \sigma_s + \lambda(X_s^\epsilon)^2 \zeta(m_s, s) - \sum_j \chi_j^\epsilon e^{-a(s-T_j)} b_j(v_s, s) \right) dB_i, s$$
The BSDE for ϵH can be written in the form:

$$Y_t^\epsilon = \epsilon H + \int_t^T \zeta m_s \lambda(X_s^\epsilon)^2 ds + \sum_i \int_t^T \left(-X_s^\epsilon \sigma_i \sigma_s + \lambda(X_s^\epsilon)^2 \xi(m_s, s) \right.$$

$$\left. - \sum_j \chi_j^{\epsilon, s} e^{-a(s-T_j)} b_j(v_s, s)\right) dB_{i,s}$$

Theorem 4

Let $H \in \mathcal{L}^\infty(\mathcal{F}_T)$. Then, if (X, χ, Y) denotes the solution of the BSDE with $\zeta = 0$ and $\epsilon = 1$, we have that $H_t(0) = Y_t = \mathbb{E}_Q(H|\mathcal{F}_t)$ and

$$\frac{1}{\epsilon}X^\epsilon \to X \text{ in } \mathcal{L}^2(dQ \times dt) \text{ as } \epsilon \to 0.$$
In the results above, H cannot depend on X. We don’t know the existence of a solution to the equation

$$\epsilon h(S_T - 2\lambda \int_0^T \tilde{X}_s^\epsilon dm_s) = \tilde{Y}_t^\epsilon - \int_t^T \tilde{X}_s^\epsilon dS_s + \lambda \int_t^T (\tilde{X}_s^\epsilon)^2 dm_s - \sum_i \int_t^T \tilde{\chi}_i, s dG_{i,s}.$$
In the results above, H cannot depend on X. We don’t know the existence of a solution to the equation

$$\epsilon h(S_T - 2\lambda \int_0^T \tilde{X}_s \, dm_s) = \tilde{Y}_t - \int_t^T \tilde{X}_s \, dS_s + \lambda \int_t^T (\tilde{X}_s)^2 \, dm_s - \sum_i \int_t^T \tilde{\chi}_{i,s} \, dG_{i,s}.$$

Instead, we find solution $(X^\epsilon, \chi^\epsilon, Y^\epsilon)$ of the BSDE

$$\epsilon h(S_T - 2\lambda \int_0^T \epsilon X_s \, dm_s) = Y_t^\epsilon - \int_t^T X_s \, dS_s + \lambda \int_t^T (X_s)^2 \, dm_s - \sum_i \int_t^T \chi_{i,s} \, dG_{i,s}.$$
In the results above, H cannot depend on X. We don’t know the existence of a solution to the equation

$$
\epsilon h(S_T - 2\lambda \int_0^T \tilde{X}_s^\epsilon ds_s) = \tilde{Y}_t^\epsilon - \int_t^T \tilde{X}_s^\epsilon dS_s + \lambda \int_t^T (\tilde{X}_s^\epsilon)^2 dm_s - \sum_i \int_t^T \tilde{\chi}_{i,s}^\epsilon dG_{i,s}.
$$

Instead, we find solution $(X^\epsilon, \chi^\epsilon, Y^\epsilon)$ of the BSDE

$$
\epsilon h(S_T - 2\lambda \int_0^T \epsilon X_s dm_s) = Y_t^\epsilon - \int_t^T X_s^\epsilon dS_s + \lambda \int_t^T (X_s^\epsilon)^2 dm_s - \sum_i \int_t^T \chi_{i,s}^\epsilon dG_{i,s}.
$$

Theorem 5

If h is Lipschitz continuous and bounded then

$$
\sqrt{E_Q \left| \epsilon h(S_T - 2\lambda \int_0^T X_s^\epsilon dm_s) - \epsilon h(S_T - 2\lambda \int_0^T \epsilon X_s dm_s) \right|^2} = O(\epsilon^{2.5}).
$$

Furthermore, if h is twice differentiable and its second derivative is bounded, then

$$
H'_t(0) = E_Q \left(\int_t^T \zeta m_s X_s^2 ds \mid F_t \right) - 2\lambda E_Q \left(h'(S_T) \left(\int_t^T X_s dm_s \right) \mid F_t \right).
$$
References

