Suppose that $G = H \oplus K$ with G a finite abelian group.

(a) How does one get the invariant factors of G directly from those of H and K?

Write all the invariant factors of H and K in a list. Take the lcm of the factors in this list. This is the first invariant factor of G. For each prime power in the lcm, find an element in the list with the same prime power and divide this element by the prime power. Then we have a new list. Take the lcm of this list, and this is the second invariant factor of G. Again, continue this process to generate a new list. Repeat this process until all elements in the list are 1.

Example. Let $Inv(H) = \{7 \cdot 5^2 \cdot 3 \cdot 2, 5^2 \cdot 3\}$ and $Inv(K) = \{13 \cdot 3^3 \cdot 2^2, 3 \cdot 2^2, 2\}$.

$List_1 : \{7 \cdot 5^2 \cdot 3 \cdot 2, 5^2 \cdot 3, 13 \cdot 3^3 \cdot 2^2, 3 \cdot 2^2, 2\}$

$lcm_1 : 13 \cdot 7 \cdot 5^2 \cdot 3^3 \cdot 2^2$

$List_2 : \{3 \cdot 2, 5^2 \cdot 3, 1, 3 \cdot 2^2, 2\}$

$lcm_2 : 5^2 \cdot 3 \cdot 2^2$

$List_3 : \{2, 3, 1, 3, 2\}$

$lcm_3 : 3 \cdot 2$

$List_4 : \{1, 1, 1, 3, 2\}$

$lcm_4 : 3 \cdot 2$

$List_5 : \{1, 1, 1, 1\}$ So now we’re done.

$Inv(G) = \{13 \cdot 7 \cdot 5^2 \cdot 3^3 \cdot 2^2, 5^2 \cdot 3 \cdot 2^2, 3 \cdot 2, 3 \cdot 2\}$

(b) Given the invariant factors of G and H, how does one calculate the invariant factors of K?

Decompose the invariant factors of G and H into their prime powers. If a prime power appears in both lists, delete that prime power from the lists. After all common prime powers have been deleted, the list for H will be empty. Then with the new list for G, find the greatest prime power for each prime and multiply them together to find the first invariant factor of K. Delete these prime powers from the list. Then apply this process with the new list to find the second invariant factor of K. Repeat this process until the list is empty.
Example. Let $\text{Inv}(G) = \{13 \cdot 7 \cdot 5^2 \cdot 3^3 \cdot 2^2, 5^2 \cdot 3 \cdot 2^2, 3 \cdot 2, 3 \cdot 2\}$ and $\text{Inv}(H) = \{7 \cdot 5^2 \cdot 3 \cdot 2, 5^2 \cdot 3\}$.

$\text{List}_H : \{7, 5^2, 5^2, 3, 3, 2\}$
$\text{List}_G : \{13, 7, 5^2, 5^2, 3^3, 3, 3, 3, 2^2, 2^2, 2, 2\}$
List_1(after cancellation): $\{13, 3^3, 3, 2^2, 2^2, 2\}$
$\text{Inv}_1 : 13 \cdot 3^3 \cdot 2^2$
$\text{List}_2 : \{3, 2^2, 2\}$
$\text{Inv}_2 : 3 \cdot 2^2$
$\text{List}_3 : \{2\}$
$\text{Inv}_3 : 2$
$\text{List}_4 : \{\} \text{ So now we're done.}$
Then $\text{Inv}(K) = \{13 \cdot 3^3 \cdot 2^2, 3 \cdot 2^2, 2\}$