TWiki
>
MSC Web
>
MscCapsules
>
InfiniteSeriesSynopsis
>
UsefulLimits
(2008-11-16,
DickFurnas
)
(raw view)
E
dit
A
ttach
---+ Useful Limits %BEGINOVERVIEW% ...for working with sequences and series. %ENDOVERVIEW% %STARTINCLUDE% ---++ Exponentials <latex> \lim_{h \rightarrow 0} (1+h)^{\frac{1}{h}} = e </latex> <latex> \lim_{n \rightarrow \infty} (1+\frac{1}{n})^n = e </latex> <latex> \lim_{n \rightarrow \infty} (1-\frac{1}{n})^n = e^{-1} </latex> <latex> \lim_{n \rightarrow \infty} (1+\frac{x}{n})^n = e^x </latex> ---++ Powers and Roots <latex> \lim_{n \rightarrow \infty} \frac{1}{n^p} =0 \mbox{ if $p>0$}</latex> <latex> \lim_{n \rightarrow \infty} x^n \left \{ \begin{array}{l} \mbox{ $= 0$ if $|x| <1$} \\ \mbox{diverges if $ |x| >1 $} \end{array} \right.</latex> <latex> \lim_{n \rightarrow \infty} \frac{x^n}{n!} = 0 \mbox{ for all $x$}</latex> <latex> \lim_{n \rightarrow \infty} x^{\frac{1}{n}} = 1 \mbox{ for $x > 0$}</latex> <latex> \lim_{n \rightarrow \infty} n^{\frac{1}{n}} = 1 </latex> ---++ Properties of Limits ---+++ The limit of a sum is the sum of the limits: <latex> \lim_{n \rightarrow \infty} (a_n + b_n) = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n </latex> ---+++ The limit of a product is the product of the limits: <latex> \lim_{n \rightarrow \infty} (a_n \cdot b_n) = \lim_{n \rightarrow \infty} a_n \cdot \lim_{n \rightarrow \infty} b_n </latex> ---+++ The limit of a quotient is the quotient of the limits: <latex> \lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \frac{\lim_{n \rightarrow \infty} a_n}{\lim_{n \rightarrow \infty} b_n} </latex> ---++ Squeeze Theorem: <latex>\begin{array}{c}\mbox{If $a_n \le b_n \le c_n$ and $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n = L$} \\ \mbox{then $\lim_{n \rightarrow \infty} b_n = L$}\end{array}</latex> ---+++ AKA the "Flyswatter Theorem". Why? <latex>\begin{array}{c}\mbox{Series $b_n$ buzzes between $a_n$ and $c_n$ } \\ \mbox{$a_n$ and $c_n$ swat the buzzing at $L$ as $n \rightarrow \infty$}\end{array}</latex> :-) ---++ Ratios of Polynomials The limiting behavior of the ratio of two polynomials depends on the degree of the polynomials. The polynomial of higher degree "wins". If their degrees are the same, then the limit is the ratio of the leading coefficients. <latex> \lim_{x \rightarrow \infty} \frac{p_0 + p_1x +p_2x^2 + ... +p_nx^n}{q_0 + q_1x + q_2x^2 + ... + q_mx^m}</latex> <latex>= \lim_{x \rightarrow \infty} \frac{P(x)}{Q(x)} </latex> <latex> = \left \{ \begin{array}{l} \mbox{diverges if the degree of $P$ is larger ($m < n$).} \\ \mbox{$\frac{p_n}{q_n}$ if the degree of $P$ and $Q$ are the same ($m = n$).} \\ \mbox{ $0$ if the degree of $Q$ is larger ($m > n$).} \end{array} \right.</latex> %STOPINCLUDE% --- -- Main.DickFurnas - 16 Nov 2008
E
dit
|
A
ttach
|
P
rint version
|
H
istory
: r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r1 - 2008-11-16 - 22:00:54 -
DickFurnas
MSC
Log In
or
Register
Math Support Center (MSC) Wiki
Search
Index
Recent Changes
More MSC ...
Home
Create New Topic
Notifications
Statistics
Preferences
Department of Mathematics
Math Home
More Dept. Wiki...
Webs
Conferences
Courses
Math7350
Forum
ITO
MEC
MH
MSC
Main
MathComputing
Numb3rs
People
REU
SMI
Sandbox
TWiki
Teach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.