TWiki
>
MSC Web
>
MscCapsules
>
InfiniteSeriesSynopsis
>
FamousSeries
(2008-11-18,
DickFurnas
)
(raw view)
E
dit
A
ttach
---+ Famous Series %BEGINOVERVIEW% %ENDOVERVIEW% %STARTINCLUDE% ---++ Geometric Series <latex>1 + x + x^2 + x^3 + ...</latex> <latex>\left \{ \begin{array}{l} \mbox{ \small $=\frac{1}{1-x}$ if $|x| < 1$ } \\ \mbox{ \small diverges if $|x| > 1$ } \end{array} \right. </latex> <latex>\mbox{ \small $=\sum_{i=0}^\infty x^i$ }</latex> ---++ P-Series <latex>1+\frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \frac{1}{5^p} + ...</latex> <latex>\mbox{ \small diverges for $p\le 1$ }</latex> <latex>\mbox{ \small $=\sum \frac{1}{n^p}$ }</latex> ---++ Harmonic Series <latex>1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...</latex> * diverges <latex>\mbox{ \small $=\sum_{1}^\infty \frac{1}{n}$ }</latex> * this is a special case of the P-Series for P=1 ---++ Alternating Harmonic Series <latex>1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - ...</latex> * converges to _ln(1+1) = ln(2)_ using series for _ln(1+x)_ below. <latex>\mbox{ \small $= \sum_{n=1}^\infty (-1)^n\frac{1}{n}$ }</latex> ---++ Exponential <latex>1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ...</latex> <latex>\mbox{ \small $= e^x$ }</latex> <latex>\mbox{ \small $= \sum_{n=0}^\infty \frac{x^n}{n!}$ }</latex> <latex>\mbox{ \small $e^x = \cos{ix} + i\sin{ix}$ } </latex> where <latex>\mbox{ \small $i=\sqrt{-1}$ }</latex> ---++ Sin <latex>x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ...</latex> <latex>\mbox{ \small $=\sin{x}$ }</latex> <latex>\mbox{ \small $= \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!}$ }</latex> ---++ Cos <latex>1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + ...</latex> * <latex>\mbox{ \small $= \cos{x}$ }</latex> <latex>\mbox{ \small $= \sum_{n=0}^\infty (-1)^n\frac{x^{2n}}{(2n)!}$ }</latex> ---++ _ln_ (1+x) <latex>x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ...</latex> <latex>\mbox{ \small $= \ln{(1+x)} = \sum_{n=1}^\infty (-1)^{n+1}\frac{x^{n}}{n}$ }</latex> * you can arrive at this relation by integrating a _Geometric Series_ in _-t_ term-by-term. %TWISTY% <latex>\mbox{ \small $ln{(1+x)} = \int{\frac{1}{1+t}}dt$ }</latex> <latex>\mbox{ \small $= \int{\frac{1}{1-(-t)}}dt$ }</latex> <latex>\mbox{ \small $= \int{1 + (-t) + (-t)^2 + (-t)^3 + ...} dt$ }</latex> <latex>\mbox{ \small $= \int{1 -t + t^2 - t^3 + ...} dt$ }</latex> <latex>\mbox{ \small $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ...$ }</latex> %ENDTWISTY% * if _x=-1_ , i.e. _ln(1+(-1)) = ln(0)_ , this is the negative of the Harmonic Series which diverges toward -∞ ---++ _arctan_ (x) <latex>x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ...</latex> <latex>\mbox{ \small $= \arctan{x}$ }</latex> <latex>\mbox{ \small $= \sum_{n=0}^\infty (-1)^{n}\frac{x^{2n+1}}{2n+1}$ }</latex> * you can arrive at this relation by integrating a _Geometric Series_ in _-t<sup>2</sup>_ term-by-term. %TWISTY% <latex>\mbox{ \small $\arctan{(1+x)} = \int{\frac{1}{1+t^2}}dt$ }</latex> <latex>\mbox{ \small $= \int{\frac{1}{1-(-t^2)}}dt$ }</latex> <latex>\mbox{ \small $= \int{1 + (-t^2) + (-t^2)^2 + (-t^2)^3 + ...} dt$ }</latex> <latex>\mbox{ \small $= \int{1 -t^2 + t^4 - t^6 + ...} dt$ }</latex> <latex>\mbox{ \small $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ...$ }</latex> %ENDTWISTY% %STOPINCLUDE% -- Main.DickFurnas - 16 Nov 2008
E
dit
|
A
ttach
|
P
rint version
|
H
istory
: r3
<
r2
<
r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r3 - 2008-11-18 - 00:58:32 -
DickFurnas
MSC
Log In
or
Register
Math Support Center (MSC) Wiki
Search
Index
Recent Changes
More MSC ...
Home
Create New Topic
Notifications
Statistics
Preferences
Department of Mathematics
Math Home
More Dept. Wiki...
Webs
Conferences
Courses
Math7350
Forum
ITO
MEC
MH
MSC
Main
MathComputing
Numb3rs
People
REU
SMI
Sandbox
TWiki
Teach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.