TWiki
>
MSC Web
>
DiagnosticTest
>
DiagnosticTestAlgebra
(2009-01-26,
DickFurnas
)
(raw view)
E
dit
A
ttach
---+ Algebra Diagnostic Test %STARTINCLUDE% ---++ Algebra __Combine and simplify expressions as much as possible.%BR%Solve equations for x.__ ---+++ !!1. <latex>\mbox{\small $\frac{1}{a+b} - \frac{2a}{a^2-b^2}$}</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{1}{b-a}$ }</latex> %SHOWWORK% <latex>\mbox{ \small $\frac{1}{a+b} - \frac{2a}{a^2-b^2}$ }</latex> <latex>=\mbox{ \small $\frac{1}{a+b} \cdot \frac{a-b}{a-b} - \frac{2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{a-b}{(a+b)(a-b)} - \frac{2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{a-b-2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-b-a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-(b+a)}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-(a+b)}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-1}{(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{1}{b-a}$ }</latex> %ENDANSWER% ---+++ !! 2. <latex>\mbox{ \small $\frac{x^2 + 2x + 1}{2x^2} \div \frac{x+1}{x+2}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{ x^2+3x+2 }{2x^2}$ }</latex> %SHOWWORK% <latex>\mbox{ \small $\frac{x^2 + 2x + 1}{2x^2} \div \frac{x+1}{x+2}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)(x+1)}{2x^2} \cdot \frac{x+2}{x+1}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)}{2x^2} \cdot \frac{(x+2)}{1}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)(x+2)}{2x^2}$ }</latex> <latex>=\mbox{ \small $\frac{ x^2+3x+2 }{2x^2}$ }</latex> %ENDANSWER% ---+++ !!3. <latex>\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> %SHOWWORK% * Cannot be simplified. * _however,_ if we are told further that <latex>\mbox{ \small $d = c$}</latex> then we have a common factor in the denominator: * <latex>\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> * <latex>=\mbox{ \small $-\frac{a+b}{ac+bc}$ }</latex> * <latex>=\mbox{ \small $ -\frac{(a+b)}{(a+b)c}$ }</latex> * <latex>=\mbox{ \small $ -\frac{1}{c}$ }</latex>, provided <latex>\mbox{ \small $ (a+b) \ne 0$ }</latex> %ENDANSWER% ---+++ !!4. <latex>\mbox{ \small $\frac{(2a)^3}{a^5}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{8}{a^2}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\frac{2^3a^3}{a^2a^3}$ }</latex> <latex>=\mbox{ \small $\frac{8}{a^2}$ }</latex> %ENDANSWER% ---+++ !!5. <latex>\mbox{ \small $(0.2a^2)^4$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $=.0016 a^{8}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $(0.2)^4 \cdot (a^2)^4$ }</latex> <latex>=\mbox{ \small $(2 \cdot .1)^4 \cdot a^{2*4}$ }</latex> <latex>=\mbox{ \small $2^4 \cdot 10^{-4} \cdot a^{8}$ }</latex> <latex>=\mbox{ \small $16 \cdot 10^{-4} a^{8}$ }</latex> <latex>=\mbox{ \small $=.0016 a^{8}$ }</latex> %ENDANSWER% ---+++ !!6. <latex>\mbox{ \small $\frac{8y^n}{-2y^{n-1}}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $-\frac{8 \cdot y}{2} $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\frac{8y^n}{-2y^{n-1}} \cdot \frac{y}{y}$ }</latex> <latex>=\mbox{ \small $\frac{8(y^n) \cdot y}{-2(y^{n})} $ }</latex> <latex>=\mbox{ \small $\frac{8 \cdot y}{-2} $ }</latex> <latex>=\mbox{ \small $-\frac{8 \cdot y}{2} $ }</latex> %ENDANSWER% ---+++ !!7. <latex>\mbox{ \small $\sqrt[3]{-64y^{27}}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ -4 y^{9}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{64} \cdot \sqrt[3]{y^{27}} $ }</latex> <latex>=\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{64} \cdot y^{\frac{27}{3}}$ }</latex> <latex>=\mbox{ \small $ -1 \cdot 4 \cdot y^{9}$ }</latex> <latex>=\mbox{ \small $ -4 y^{9}$ }</latex> %ENDANSWER% ---+++ !!8. <latex>\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> * No _algebraic_ simplification. * _however..._ A beautiful _geometric_ simplification is possible: * <latex>\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> is the hypotenuse of the right triangle with sides <latex>a</latex> and <latex>b</latex> %ENDANSWER% ---+++ !!9. <latex>\mbox{ \small $( a + b )^3 $ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $( a + b ) \cdot ( a + b )^2 $ }</latex> <latex>=\mbox{ \small $( a + b ) \cdot ( a^2 + 2 a b + b^2 ) $ }</latex> <latex>=\mbox{ \small $ a ( a^2 + 2 a b + b^2 ) + b ( a^2 + 2 a b + b^2 ) $ }</latex> <latex>=\mbox{ \small $ a^3 + 2 a^2 b + a b^2 + b a^2 + 2 a b^2 + b^3 $ }</latex> <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> ---++++ !!Alternatively: Recall Pascal's Triangle: <pre> 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 </pre> ...in which elements in a row are the sum of the two elements in the row above it. These numbers are the _Binomial Coefficients._ <latex>\mbox{ \small $( a + b )^3 $ }</latex> is the cube of the binomial <latex>\mbox{ \small $( a + b ) $ }</latex> so the coefficients can be taken from the third row above: =1 3 3 1= and the exponents on <latex>\mbox{ \small $ a $ }</latex> start with <latex>\mbox{ \small $ 3 $ }</latex> and count down, while the exponents on <latex>\mbox{ \small $ b $ }</latex> start with <latex>\mbox{ \small $ 0 $ }</latex> and count up: <latex>=\mbox{ \small $ 1\cdot a^3b^0 + 3 \cdot a^2b^1 + 3 \cdot a^1b^2 + 1\cdot a^0b^3 $ }</latex> which simplifies to: <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> as previously. %ENDANSWER% ---+++ !!10. <latex>\mbox{ \small $( \sqrt{x} + 3\sqrt{y} ) ( \sqrt{x} - \sqrt{y} )$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ x + 2 \sqrt{x \cdot y} - 3 y $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $ \sqrt{x} ( \sqrt{x} - \sqrt{y} ) + 3\sqrt{y} ( \sqrt{x} - \sqrt{y} )$ }</latex> <latex>=\mbox{ \small $ ( \sqrt{x} \sqrt{x} - \sqrt{x} \sqrt{y} ) + (3\sqrt{y} \sqrt{x} - 3 \sqrt{y} \sqrt{y} )$ }</latex> <latex>=\mbox{ \small $ x - \sqrt{x} \sqrt{y} + 3\sqrt{y} \sqrt{x} - 3 y $ }</latex> <latex>=\mbox{ \small $ x + 2 \sqrt{x \cdot y} - 3 y $ }</latex> %ENDANSWER% ---+++ !!11. <latex>\mbox{ \small $x^3 - x^2 - 6x = 0$ }</latex> %BEGINANSWER% either <latex>\mbox{ \small $x=3$ }</latex> or <latex>\mbox{ \small $x=-2$ }</latex> or <latex>\mbox{ \small $x=0$ }</latex> %SHOWWORK% <latex>0 = \mbox{ \small $x^3 - x^2 - 6x $ }</latex> <latex> = \mbox{ \small $(x^2 - x - 6+)(x)$ }</latex> <latex> = \mbox{ \small $(x-3) \cdot (x+2) \cdot (x) $ }</latex> if a product is _zero_ one of its factors must be _zero_ so: either <latex>\mbox{ \small $ (x-3) = 0$ }</latex> or <latex>\mbox{ \small $ (x+2) = 0$ }</latex> or <latex>\mbox{ \small $ (x) = 0$ }</latex> and either <latex>\mbox{ \small $x=3$ }</latex> or <latex>\mbox{ \small $x=-2$ }</latex> or <latex>\mbox{ \small $x=0$ }</latex> %ENDANSWER% ---+++ !!12. <latex>\mbox{ \small $x^2 + 7x = -3$ }</latex> %BEGINANSWER% <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{37} }{ 2 }$ } </latex> %SHOWWORK% <latex>-3 = \mbox{ \small $x^2 + 7x $ }</latex> <latex> 0 = \mbox{ \small $x^2 + 7x + 3 $ }</latex> <latex> x = \mbox{ \small $\frac{ -7\pm\sqrt{7^2-4 \cdot 1 \cdot 3} }{ 2 \cdot 1 }$ } </latex> <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{49-12} }{ 2 }$ } </latex> <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{37} }{ 2 }$ } </latex> * Rearrange so the equation is of the form: * <latex>\mbox{ \small $a x^2 + bx + c = 0$ }</latex> * and use the _Quadratic Formula:_ * <latex> x = \mbox{ \small $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$ } </latex> %ENDANSWER% %STOPINCLUDE% -- Main.DickFurnas - 21 Apr 2007
E
dit
|
A
ttach
|
P
rint version
|
H
istory
: r4
<
r3
<
r2
<
r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r4 - 2009-01-26 - 03:30:51 -
DickFurnas
MSC
Log In
or
Register
Math Support Center (MSC) Wiki
Search
Index
Recent Changes
More MSC ...
Home
Create New Topic
Notifications
Statistics
Preferences
Department of Mathematics
Math Home
More Dept. Wiki...
Webs
Conferences
Courses
Math7350
Forum
ITO
MEC
MH
MSC
Main
MathComputing
Numb3rs
People
REU
SMI
Sandbox
TWiki
Teach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.