Difference: MathTest (1 vs. 4)

Revision 42008-02-21 - Main.DickFurnas

Line: 1 to 1
 
META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 20 to 20
 

Sample Math graphics and their LaTeX expressions as used to produce them on these pages.

Deleted:
<
<
Examples for using .
In the TWiki web collaboration environment, which can have embedded LaTeX support, these must be surrounded by %
e.g. %$\pi$% yields
This graphic arises from this text.
$ -X $
$ \widehat{p}\dagger x_{1}^\prime\bar{x}\bullet $
$ \alpha\beta\delta\gamma\mu\pi\sigma\theta\omega $
$ A B\Delta\Gamma M\Pi\Sigma\Theta\Omega $
$ \sqrt[4]{x}^2  = \sqrt{x} $
$ x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a } $
$ x = \mbox{\LARGE $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$} $
$ Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k} $
$ \sum_{i=1}^n i = \frac{n*(n+1)}{2} $
$ \int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} $
$ \int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx $ where $ x = f^{-1}(y) $
$ y\propto x $
$ F^{\circ}=\frac{9}{5} C + 32 $
$ N(\mu,\sigma) $
$ Binomial(n,p)\sim N(np,\sqrt{npq}) $
$ \mbox{\small $Binomial(n,p)\sim N(np,\sqrt{npq})$} $
$ \ll 0 \le\sigma^2 < \infty \gg $
$ year\approx\pi\cdot10^7 seconds $

 \ No newline at end of file
Added:
>
>
Examples for using .
This installation of the TWiki web collaboration environment has embedded LaTeX support. Expressions must be surrounded by opening and closing latex tags. e.g.:
<latex>e^{i\pi}=-1</latex> yields
This graphic arises from this text.
-X
\widehat{p}\dagger x_{1}^\prime\bar{x}\bullet
\alpha\beta\delta\gamma\mu\pi\sigma\theta\omega
A B\Delta\Gamma M\Pi\Sigma\Theta\Omega
\sqrt[4]{x}^2  = \sqrt{x}
x = \mbox{\LARGE $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$}
x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }
x = \mbox{\small $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$}
Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k}
\sum_{i=1}^n i = \frac{n*(n+1)}{2}
\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
\int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx $ where $ x = f^{-1}(y)
y\propto x
F^{\circ}=\frac{9}{5} C + 32
N(\mu,\sigma)
Binomial(n,p)\sim N(np,\sqrt{npq})
\mbox{\small $Binomial(n,p)\sim N(np,\sqrt{npq})$}
\ll 0 \le\sigma^2 < \infty \gg
year\approx\pi\cdot10^7 seconds

Revision 32007-03-01 - Main.DickFurnas

Line: 1 to 1
 
META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 28 to 28
 
$ \widehat{p}\dagger x_{1}^\prime\bar{x}\bullet $
$ \alpha\beta\delta\gamma\mu\pi\sigma\theta\omega $
$ A B\Delta\Gamma M\Pi\Sigma\Theta\Omega $
Added:
>
>
$ \sqrt[4]{x}^2  = \sqrt{x} $
 
$ x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a } $
$ x = \mbox{\LARGE $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$} $
$ Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k} $

Revision 22007-03-01 - Main.DickFurnas

Line: 1 to 1
 
META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 14 to 14
 

-- SteveGaarder - 28 Feb 2007 \ No newline at end of file

Added:
>
>
Here is some more math:

Sample Math graphics and their LaTeX expressions as used to produce them on these pages.

Examples for using .
In the TWiki web collaboration environment, which can have embedded LaTeX support, these must be surrounded by %
e.g. %$\pi$% yields
This graphic arises from this text.
$ -X $
$ \widehat{p}\dagger x_{1}^\prime\bar{x}\bullet $
$ \alpha\beta\delta\gamma\mu\pi\sigma\theta\omega $
$ A B\Delta\Gamma M\Pi\Sigma\Theta\Omega $
$ x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a } $
$ x = \mbox{\LARGE $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$} $
$ Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k} $
$ \sum_{i=1}^n i = \frac{n*(n+1)}{2} $
$ \int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} $
$ \int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx $ where $ x = f^{-1}(y) $
$ y\propto x $
$ F^{\circ}=\frac{9}{5} C + 32 $
$ N(\mu,\sigma) $
$ Binomial(n,p)\sim N(np,\sqrt{npq}) $
$ \mbox{\small $Binomial(n,p)\sim N(np,\sqrt{npq})$} $
$ \ll 0 \le\sigma^2 < \infty \gg $
$ year\approx\pi\cdot10^7 seconds $

Revision 12007-02-28 - Main.SteveGaarder

Line: 1 to 1
Added:
>
>
META TOPICPARENT name="SteveGaarder"
Here is some math:

<latex title="this is an example">
  \int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
</latex>

-- SteveGaarder - 28 Feb 2007

 
This site is powered by the TWiki collaboration platformCopyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.