Ka Yue Wong

Ph.D. (2013) Cornell University

First Position

Postdoctoral Fellow, Other (Academic)


Dixmier Algebras on Complex Classical Nilpotent Orbits and their Representation Theories


Dan M. Barbasch

Research Area

representation theory of Lie groups


For a nilpotent orbit $\mathcal{O}$ in a complex classical Lie group $G$, R. Brylinski constructed a Dixmier Algebra model of its Zariski closure, based on an earlier construction by Kraft and Procesi. On the other hand, Barbasch constructed another model on $\mathcal{O}$ itself. Treating $G$ as a real Lie group with maximal compact subgroup $K$, both models can be seen as admissible $(\mathfrak{g}_{\mathbb{C}},K_{\mathbb{C}})$-modules of finite length. We are interested in finding out the composition factors of both models.