Robert S. Strichartz

Publication List (updated 3/16)

(All papers available on request, by number. Asterisk (*) indicates works not in final form.)

Research Papers

[R98] (with Kevin Coletta and Kealey Dias) *Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equation, wave equation and Gibbs’ phenomenon*, Fractals 12 (2004), 413–449.

(with Anna Blasiak and Baris Evren Ugurcan) Spectra of self-similar Laplacians on the Sierpinski gasket with twists, Fractals, 16 (2008), 43–68.

(with Mihai Cucuringu) Infinitesimal resistance metrics on Sierpinski gasket type fractals, Analysis, 28 (2008), 319–331.

(with Edward Fan and Zuhair Khandker) Harmonic oscillators on infinite Sierpinski gaskets, Communications in Mathematical Physics, 287 (2009), 351–382.

(with Adam Allan and Michael Barany) Spectral operators on the Sierpinski gasket I, Complex Variables and Elliptic Equations, 54 (2009), 521–543.

A fractal quantum mechanical model with Coulomb potential, Communications on Pure and Applied Analysis, 8 (2009), 743–755.

(with Huo-Jun Ruan) Covering maps and periodic functions on higher dimensional Sierpinski gaskets, Canadian Journal of Mathematics, 61 (2009), 1151–1181.

(with Shu Tong Tse) Local behavior of smooth functions for the energy Laplacian on the Sierpinski gasket, Analysis, 30 (2010), 285–299.

(with Steven M. Heilman) Homotopies of eigenfunctions and the spectrum of the Laplacian on the Sierpinski carpet, Fractals, 18 (2010), 1–34.

[R131] (with Sarah Constantine and Miles Wheeler) *Analysis of the Laplacian and spectral operators on the Vicsek set*, Communications on Pure and Applied Analysis, 10 (2010), 1–44.

[R136] (with Justin Owen) *Boundary value problems for harmonic functions on a domain in the Sierpinski gasket*, Indiana University Mathematics Journal, 61 (2012), 319–335

[R155*] (with Jonathan Fox) *Unexpected spectral asymptotics for wave equations on certain compact spacetimes*, Journal d’Analyse Mathematiques, to appear.

[R156*] *“Graph paper” trace characterizations of functions of finite energy*, Journal d’Analyse Mathematique, to appear.

[R159*] (with Timothy Murray), *Spectral asymptotics of the Laplacian on surfaces of constant curvature*, submitted for publication.

[R160*] (with Samantha Fairchild, Ilse Haim, Rafael G. Setra and Travis Westuru) *The abelian sandpile model on fractal graphs*, submitted for publication.
Expository Publications

Unpublished Educational Materials

[U1] The bouncing ball — an exercise in mathematical modeling

Books

Web Sites

(created by students working under my supervision)

Index by Topics

Borel theorem: R112, R113
Boundary value problems on fractals: R137, R145, R148
Bounded mean oscillation: R26, R28
Cauchy transforms: R67
Coulomb potential: R118
Covering maps: R119, R120
Distribution theory: R130
Elliptic partial differential equations: R14, R17, R25
Energy Laplacians: R125, R146
Energy partition: R90
Extensions and minimizers: R147
Fourier transforms: R20, R23, R24, R31, R43, R44, R45, R46, R49, R54, R56, R64, R79, E11
Fourier series: R78, R79, R100, R105
Fractafolds: R93, R119, R120, R127, R134
Gibbs’ phenomenon: R78, R98, W11
Graph Laplacians: R117, R158
Graph paper traces: R152, R156
Green’s functions: R81
Hardy spaces: R15, R17, R47
Harmonic analysis on symmetric spaces: R13, R18, R19, R20, R21, R23, R29, R30, R38, R42, R43, R44, R58, R59
Harmonic functions on the Sierpinski gasket: R87, R137, R142, R146
Harmonic mappings: R86, W3
Harmonic oscillator: R116, W22
Heat semigroups: R35, R37, R51, R71, R102, R117, R131, R141, W12, W25, W28
Heisenberg group: R44, R50, R53, R59, R62, R157
Hierarchical fractals: R121, W16
Hodge-de Rham theory R144, R150, W32
Isoperimetric estimates: R70
Julia sets: R133, R138, R140, W24, W26, W29
Lattice points in a disk: R145
Lévy dragon: R72, R88, R103, W4, W16
L^p estimates: R6, R7, R8, R9, R13, R17, R19, R29, R35, R37, R44, R50, R63, R91
Localized eigenfunctions E14
Magic carpet: R153, R154, W32
Mean value properties: R142
Nilpotent Lie groups: R12, R22, R44, R50, R53
Orthogonal polynomials: R132, R139, W20, W27
Outer Approximation: R111, R122, W18, W21, W23
p–Laplacian: R94, R95, W5, W8
Peano curves: R153, W30
Pseudodifferential operators: R12, R14, R143, E2
Quantum mechanics: R116, R118, R124, W22, W31
Radon transforms: R29, R38, R50, R60, E1
Resolvants: R123
Riemannian geometry: R35, R37, R41, R51
Sampling theory: R79, R85, R92, W2, W6, R154, R158
Sandpile models: R160, W35
Singular integrals: R22, R32, R33
Sobolev spaces: R3, R4, R5, R11, R16, R26, R28, R34, R35, R47, R58, R65, R91, R99, R130, R143, R147, R152
Splines: R78, R82, R83, R98, R108, W1, W7, W10, W15
Sub–Riemannian geometry: R39, R40, R53, E5
Szegő Limit Theorems: R128
Taylor approximations: R76, R97, R104, R106, R114, W9, W12, W13
Tilings: R53, R57, R72, R73, R88, R102, W4, W16
Twists: R108, R111, R114, W21
Uncertainty principle: R43, R101
Vicsek set: R131, W25
Wave equations: R8, R9, R10, R24, R25, R27, R30, R71, R98, R124, R131, R155, W10, W25, W34
Wavelets: R52, R54, R57, R65, R80, E9, E10